Skip to main content
Log in

AIE Based Coumarin Chromophore - Evaluation and Correlation Between Solvatochromism and Solvent Polarity Parameters

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new class of red emitting extensively conjugated donor-π-acceptor type dyes bearing coumarin units have been synthesized by condensation of 7-(diethylamino)-2-oxo-2 H-chromene-3-carbaldehyde with different active methylenes. All the dyes are characterized by 1H NMR, 13C NMR and HRMS spectroscopy. The photophysical behaviour and the relation between structure and properties of the coumarin “push–pull” derivatives were investigated experimentally. The dyes exhibited positive solvatochromism and solvatofluorism in solution of varying polarity. These coumarin dyes show aggregation induced emission properties with red emitting fluorescence. They show absorption in the range of 501–528 and emission in the range of 547–630 nm. We evaluated photophysical properties of coumarin dyes using solvotochromism and solvent dependent shift in the emission wavelength. All the synthesized coumarin dyes COS1-COS4 are showing very good solvatochromic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liang J, Kwok RTK, Shi H, et al. (2013) Fluorescent light-up probe with aggregation-induced emission characteristics for alkaline phosphatase sensing and activity study. ACS Appl Mater Interfaces 5:8784–8789. doi:10.1021/am4026517

    Article  CAS  PubMed  Google Scholar 

  2. Yuan WZ, Chen S, Lam JWY, et al. (2011) Towards high efficiency solid emitters with aggregation-induced emission and electron-transport characteristics. Chem Commun (Camb) 47:11216–11218. doi:10.1039/c1cc14122h

    Article  CAS  Google Scholar 

  3. Yuan WZ, Gong Y, Chen S, et al. (2012) Efficient solid emitters with aggregation-induced emission and intramolecular charge transfer characteristics: molecular design, synthesis, photophysical behaviors, and OLED application. Chem Mater 24:1518–1528. doi:10.1021/cm300416y

    Article  CAS  Google Scholar 

  4. Yuan WZ, Lu P, Chen S, et al. (2010) Changing the behavior of chromophores from aggregation-caused quenching to aggregation-induced emission: development of highly efficient light emitters in the solid state. Adv Mater 22:2159–2163. doi:10.1002/adma.200904056

    Article  CAS  PubMed  Google Scholar 

  5. Zhong B, Zhao Z, Chen S, et al. (2010) Aggregation-induced emission, self-assembly, and electroluminescence of 4,4′-bis(1,2,2-triphenylvinyl)biphenyl. Chem Commun (Camb) 46:686–688. doi:10.1039/b915271g

    Article  Google Scholar 

  6. Li K, Qin W, Ding D, et al. (2013) Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing. Sci Rep 3:1150. doi:10.1038/srep01150

    PubMed  PubMed Central  Google Scholar 

  7. Yu Y, Hong Y, Feng C, et al. (2008) Synthesis of an AIE-active fluorogen and its application in cell imaging. Sci China Ser B Chem 52:15–19. doi:10.1007/s11426-009-0008-0

    Article  Google Scholar 

  8. Yu Y, Feng C, Hong Y, et al. (2011) Cytophilic fluorescent bioprobes for long-term cell tracking. Adv Mater 23:3298–3302. doi:10.1002/adma.201101714

    Article  CAS  PubMed  Google Scholar 

  9. Liu Y, Deng C, Tang L, et al. (2011) Specific detection of D-glucose by a tetraphenylethene-based fluorescent sensor. J Am Chem Soc 133:660–663. doi:10.1021/ja107086y

    Article  CAS  PubMed  Google Scholar 

  10. Tong D, Duan H, Wang J, et al. (2014) Aggregation-enhanced excimer emission (AEEE) based on pyrenylchalcone and 2-to-4 molecular decoder by biothiols and polyanions in aqueous media. Sensors Actuators B Chem 195:80–84. doi:10.1016/j.snb.2014.01.003

    Article  CAS  Google Scholar 

  11. Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev 107:4891–4932. doi:10.1021/cr078381n

    Article  CAS  PubMed  Google Scholar 

  12. Mei J, Hong Y, Lam JWY, et al. (2014) Aggregation-induced emission: the whole is more brilliant than the parts. Adv Mater 5429–5479. doi:10.1002/adma.201401356

  13. Yamaguchi Y, Matsubara Y, Ochi T, et al. (2008) How the pi conjugation length affects the fluorescence emission efficiency. J Am Chem Soc 130:13867–13869. doi:10.1021/ja8040493

    Article  CAS  PubMed  Google Scholar 

  14. Qian Y, Cai MM, Xie LH, et al. (2011) Restriction of photoinduced twisted intramolecular charge transfer. ChemPhysChem 12:397–404. doi:10.1002/cphc.201000457

    Article  CAS  PubMed  Google Scholar 

  15. Qian Y, Cai M, Zhou X, et al. (2012) More than restriction of twisted intramolecular charge transfer: three-dimensional expanded #-shaped cross-molecular packing for emission enhancement in aggregates. J Phys Chem C 116:12187–12195. doi:10.1021/jp212257f

    Article  CAS  Google Scholar 

  16. Yan ZQ, Yang ZY, Wang H, et al. (2011) Study of aggregation induced emission of cyano-substituted oligo (p-phenylenevinylene) by femtosecond time resolved fluorescence. Spectrochim Acta Part A Mol Biomol Spectrosc 78:1640–1645. doi:10.1016/j.saa.2011.01.056

    Article  Google Scholar 

  17. Luo J, Xie Z, Lam JWY, et al. (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun 381:1740–1741. doi:10.1039/b105159h

    Article  Google Scholar 

  18. Lanke SK, Sekar N (2016) Aggregation induced emissive carbazole-based push pull NLOphores: synthesis, photophysical properties and DFT studies. Dyes Pigments 124:82–92. doi:10.1016/j.dyepig.2015.09.013

    Article  CAS  Google Scholar 

  19. Wang E, Lam JWY, Hu R, et al. (2014) Twisted intramolecular charge transfer, aggregation-induced emission, supramolecular self-assembly and the optical waveguide of barbituric acid-functionalized tetraphenylethene. J Mater Chem C 2:1801–1807. doi:10.1039/c3tc32161d

    Article  CAS  Google Scholar 

  20. Shastri L, Kalegowda S, Kulkarni M (2007) The synthesis of pyrrole bis-coumarins, new structures for fluorescent probes. Tetrahedron Lett 48:7215–7217. doi:http://dx.doi.org/10.1016/j.tetlet.2007.07.189

  21. Maeda M (1984) Laser dyes. Academic Press, New York

    Google Scholar 

  22. Zabradnik M (1992) The production and application of fluorescent brightening agent. John Wiley and Sons, New York

    Google Scholar 

  23. Drexhage KH (1973) Dye lasers. topics in applied physics

  24. Jones G, Jackson WR, Choi CY, Bergmark WR (1985) Solvent effects on emission yield and lifetime for coumarin laser dyes. Requirements for a Rotatory decay Mechanism J Phys Chem 89:294–300. doi:10.1021/j100248a024

  25. Chen CH, Fox JL, Duarte FJ, Ehrlich JJ (1988) Lasing characteristics of new coumarin-analog dyes: broadband and narrow-linewidth performance. Appl Opt 27:443–445. doi:10.1364/AO.27.000443

    Article  CAS  PubMed  Google Scholar 

  26. Hsu S-F, Lee C-C, Hwang S-W, et al. (2005) Color-saturated and highly efficient top-emitting organic light-emitting devices. Thin Solid Films 478:271–274. doi:http://dx.doi.org/10.1016/j.tsf.2004.10.038

  27. Swanson SA, Wallraff GM, Chen JP, et al. (2003) Stable and efficient fluorescent red and green dyes for external and internal conversion of blue OLED emission. Chem Mater 15:2305–2312. doi:10.1021/cm021056q

    Article  CAS  Google Scholar 

  28. Chen C-T, Chiang C-L, Lin Y-C, et al. (2003) Ortho-substituent effect on fluorescence and electroluminescence of arylamino-substituted coumarin and stilbene. Org Lett 5:1261–1264. doi:10.1021/ol034268h

    Article  CAS  PubMed  Google Scholar 

  29. Wang Z-S, Cui Y, Hara K, et al. (2007) A high-light-harvesting-efficiency coumarin dye for stable dye-sensitized solar cells. Adv Mater 19:1138–1141. doi:10.1002/adma.200601020

    Article  CAS  Google Scholar 

  30. Liu B, Wang R, Mi W, et al. (2012) Novel branched coumarin dyes for dye-sensitized solar cells: significant improvement in photovoltaic performance by simple structure modification. J Mater Chem 22:15379–15387. doi:10.1039/c2jm32333h

    Article  CAS  Google Scholar 

  31. Kandavelu V, Huang H-S, Jian J-L, et al. (2009) Novel iminocoumarin dyes as photosensitizers for dye-sensitized solar cell. Sol Energy 83:574–581. doi:http://dx.doi.org/10.1016/j.solener.2008.10.002

  32. Schill H, Nizamov S, Bottanelli F, et al. (2013) 4-trifluoromethyl-substituted coumarins with large stokes shifts: synthesis, bioconjugates, and their use in super-resolution fluorescence microscopy. Chemistry 19:16556–16565. doi:10.1002/chem.201302037

    Article  CAS  PubMed  Google Scholar 

  33. Cho S, Jang J, Song C, et al. (2013) Simple super-resolution live-cell imaging based on diffusion-assisted förster resonance energy transfer. Sci Rep 3:1208. doi:10.1038/srep01208

    PubMed  PubMed Central  Google Scholar 

  34. Signore G, Nifosì R, Albertazzi L, et al. (2010) Polarity-sensitive coumarins tailored to live cell imaging. J Am Chem Soc 132:1276–1288. doi:10.1021/ja9050444

    Article  CAS  PubMed  Google Scholar 

  35. Jung HS, Kwon PS, Lee JWJHJY, et al. (2009) Coumarin-derived Cu(2+)-selective fluorescence sensor: synthesis, mechanisms, and applications in living cells. J Am Chem Soc 131:2008–2012. doi:10.1021/ja808611d

    Article  CAS  PubMed  Google Scholar 

  36. Xiao H, Chen K, Cui D, et al. (2014) Two novel aggregation-induced emission active coumarin-based schiff bases and their applications in cell imaging. New J Chem 38:2386–2393. doi:10.1039/c3nj01557b

    Article  CAS  Google Scholar 

  37. Wu M-Y, Li K, Li C-Y, et al. (2014) A water-soluble near-infrared probe for colorimetric and ratiometric sensing of SO2 derivatives in living cells. Chem Commun (Camb) 50:183–185. doi:10.1039/c3cc46468g

    Article  CAS  Google Scholar 

  38. Morris JC, McMurtrie JC, Bottle SE, Fairfull-Smith KE (2011) Generation of profluorescent isoindoline nitroxides using click chemistry. J Org Chem 76:4964–4972. doi:10.1021/jo200613r

    Article  CAS  PubMed  Google Scholar 

  39. Jagtap AR, Satam VS, Rajule RN, Kanetkar VR (2009) The synthesis and characterization of novel coumarin dyes derived from 1,4-diethyl-1,2,3,4-tetrahydro-7-hydroxyquinoxalin-6-carboxaldehyde. Dye Pigment 82:84–89. doi:http://dx.doi.org/10.1016/j.dyepig.2008.11.007

  40. Benassi E, Egidi F, Barone V (2015) General strategy for computing nonlinear optical properties of large neutral and cationic organic chromophores in solution. J Phys Chem B 119:3155–3175. doi:10.1021/jp512342y

    Article  CAS  PubMed  Google Scholar 

  41. Phatangare KR, Lanke SK, Sekar N (2014) Fluorescent coumarin derivatives with viscosity sensitive emission - synthesis, photophysical properties and computational studies. J Fluoresc 24:1263–1274. doi:10.1007/s10895-014-1410-3

    Article  CAS  PubMed  Google Scholar 

  42. Sekar N, Umape PG, Lanke SK (2014) Synthesis of novel carbazole fused coumarin derivatives and DFT approach to study their photophysical properties. J Fluoresc 24:1503–1518. doi:10.1007/s10895-014-1436-6

    Article  CAS  PubMed  Google Scholar 

  43. Lanke SK, Sekar N (2015) Rigid coumarins: a complete DFT, TD-DFT and Non linear optical property study. J Fluoresc 25:1469–1480. doi:10.1007/s10895-015-1638-6

    Article  CAS  PubMed  Google Scholar 

  44. Ito A, Kawanishi K, Sakuda E, Kitamura N (2014) Synthetic control of spectroscopic and photophysical properties of triarylborane derivatives having peripheral electron-donating groups. Chem A Eur J 20:3940–3953. doi:10.1002/chem.201304207

    Article  CAS  Google Scholar 

  45. Zakerhamidi MS, Johari-Ahar M, Seyed Ahmadian SM, Kian R (2014) Photo-physical behavior of some antitumor anthracycline in solvent media with different polarity. Spectrochim Acta A Mol Biomol Spectrosc 130:257–262. doi:10.1016/j.saa.2014.04.048

    Article  CAS  PubMed  Google Scholar 

  46. Oliveira E, Baptista RMF, Costa SPG, Raposo MMM, L C (2014) Synthesis and solvatochromism studies of novel bis(indolyl)methanes bearing functionalized arylthiophene groups as new colored materials. Photochem Photobiol Sci 13:492–498. doi:10.1039/c3pp50352f

    Article  CAS  PubMed  Google Scholar 

  47. Fischer M, Georges J (1996) Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry. Chem Phys Lett 260:115–118. doi:10.1016/0009-2614(96)00838-X

    Article  CAS  Google Scholar 

  48. Wu J-S, Liu W-M, Zhuang X-Q, et al. (2007) Fluorescence turn on of coumarin derivatives by metal cations: a new signaling mechanism based on C = N isomerization. Org Lett 9:33–36. doi:10.1021/ol062518z

    Article  CAS  PubMed  Google Scholar 

  49. Mogilaiah K, Prashanthi M, Randheer Reddy G, et al. (2003) Microwave assisted knoevenagel condensation using sodium fluoride and lithium chloride as catalysts under solvent-free conditions. Synth Commun 33:2309–2312. doi:10.1081/SCC-120021512

    Article  CAS  Google Scholar 

  50. Ahmed S, Sarmah U, Longchar M, et al. (2000) A facile transfer of dicyano methylene group between arylidenemalononitrile and aldehyde. Synth Commun 30:771–777. doi:10.1080/00397910008087379

    Article  CAS  Google Scholar 

  51. Turro NJ (1965) Molecular photochemistry. Benjamin, London, 44

  52. Carlotti B, Flamini R, Kikaš I, et al. (2012) Intramolecular charge transfer, solvatochromism and hyperpolarizability of compounds bearing ethenylene or ethynylene bridges. Chem Phys 407:9–19. doi:10.1016/j.chemphys.2012.08.006

    Article  CAS  Google Scholar 

  53. Birks JB (1970) Photophysics of aromatic molecules. Wiley-Interscience, London

    Google Scholar 

  54. Luzung MR, Toste FD (2003) Rhenium-catalyzed coupling of propargyl alcohols and allyl silanes. J Am Chem Soc 125:15760–15761. doi:10.1021/ja039124c

    Article  CAS  PubMed  Google Scholar 

  55. McRae EG (1957) Theory of solvent effects on molecular electronic spectra. Frequency Shifts. J Phys Chem 61:562–572. doi:10.1021/j150551a012

    Article  CAS  Google Scholar 

  56. Ravi M, Samanta A, Radhakrishnan TP (1994) Excited state dipole moments from an efficient analysis of solvatochromic stokes shift data. J Phys Chem 98:9133–9136. doi:10.1021/j100088a007

    Article  Google Scholar 

  57. Ji S, Yang J, Yang Q, et al. (2009) Tuning the intramolecular charge transfer of alkynylpyrenes: effect on photophysical properties and its application in design of OFF-ON fluorescent thiol probes. J Org Chem 74:4855–4865. doi:10.1021/jo900588e

    Article  CAS  PubMed  Google Scholar 

  58. Kawski A (2002) On the estimation of excited-state dipole moments from solvatochromic shifts of absorption and fluorescence spectra. Zeitschrift für Naturforsch A 57:255–262. doi:10.1515/zna-2002-0509

    Article  CAS  Google Scholar 

  59. Patil SK, Wari MN, Panicker CY, Inamdar SR (2014) Determination of ground and excited state dipole moments of dipolar laser dyes by solvatochromic shift method. Spectrochim Acta A Mol Biomol Spectrosc 123:117–126. doi:10.1016/j.saa.2013.12.031

    Article  CAS  PubMed  Google Scholar 

  60. Beens H, Knibbe H, Weller A (1967) Dipolar nature of molecular complexes formed in the excited state. J Chem Phys 47:1183–1184. doi:10.1063/1.1712006

    Article  CAS  Google Scholar 

  61. Leu WCW, Fritz AE, Digianantonio KM, Hartley CS (2012) Push-pull macrocycles: donor-acceptor compounds with paired linearly conjugated or cross-conjugated pathways. J Org Chem 77:2285–2298. doi:10.1021/jo2026004

    Article  CAS  PubMed  Google Scholar 

  62. Valeur B (2001) Molecular fluorescence: principles and applications. Methods. doi:10.1002/3527600248

    Google Scholar 

  63. Rettig W (1986) Charge separation in excited states of decoupled systems?TICT compounds and implications regarding the development of new laser dyes and the primary process of vision and photosynthesis. Angew Chemie Int Ed English 25:971–988. doi:10.1002/anie.198609711

    Article  Google Scholar 

  64. Tong H, Hong Y, Dong Y, et al. (2007) Color-tunable, aggregation-induced emission of a butterfly-shaped molecule comprising a pyran skeleton and two cholesteryl wings. J Phys Chem B 111:2000–2007. doi:10.1021/jp067374k

    Article  CAS  PubMed  Google Scholar 

  65. Zhang X, Chi Z, Zhou X, et al. (2012) Influence of carbazolyl groups on properties of piezofluorochromic aggregation-enhanced emission compounds containing distyrylanthracene. J Phys Chem C 116:23629–23638. doi:10.1021/jp306452n

    Article  CAS  Google Scholar 

  66. Dong S, Li Z, Qin J (2009) New carbazole-based fluorophores: synthesis, characterization, and aggregation-induced emission enhancement. J Phys Chem B 113:434–441. doi:10.1021/jp807510a

    Article  CAS  PubMed  Google Scholar 

  67. Sun Y, Xu S, Wu R, et al. (2010) The synthesis, structure and photoluminescence of coumarin-based chromophores. Dyes Pigments 87:109–118. doi:10.1016/j.dyepig.2010.03.003

    Article  CAS  Google Scholar 

  68. Yang Z, Chi Z, Yu T, et al. (2009) Triphenylethylene carbazole derivatives as a new class of AIE materials with strong blue light emission and high glass transition temperature. J Mater Chem 19:5541–5546. doi:10.1039/b902802a

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to SAIF-Punjab University for recording the HRMS spectra. Sandip K. Lanke is thankful to UGC-CSIR, New Delhi for providing junior and senior research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagaiyan Sekar.

Electronic supplementary material

ESM 1

(DOCX 680 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanke, S.K., Sekar, N. AIE Based Coumarin Chromophore - Evaluation and Correlation Between Solvatochromism and Solvent Polarity Parameters. J Fluoresc 26, 497–511 (2016). https://doi.org/10.1007/s10895-015-1735-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1735-6

Keywords

Navigation