Skip to main content
Log in

Fluorescent 7-Substituted Coumarin Dyes: Solvatochromism and NLO Studies

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The effect of three substituents N,N-diethylamine, carbazole and diphenylamine at the 7 position of coumarin on linear and nonlinear optical properties are studied using absorption and emission solvatochromism, and DFT. By varying the substituent 53 nm red shift is achieved in emission. The polarity plots with regression close to unity revealed good charge transfer in the system. Solvent polarizability and dipolarity are mainly responsible for solvatochromic shift as proved by multilinear regression analysis. General Mulliken Hush analysis shows diphenylamine substituent leads to more charge separation in compound 6c. The hyperpolarizabilities are evaluated by quantum mechanical calculations. Structure of the compounds are optimized at B3LYP/6-31G(d) level and NLO computations are done using range separated hybrid functionals with large basis sets. Second order hyperpolarizability (γ) found 589.27 × 10−36, 841.29 × 10−36 and 1043.00 × 10−36 e.s.u for the compounds 6a, 6b and 6c respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Marini A, Muñoz-Losa A, Biancardi A, Mennucci B (2010) What is Solvatochromism? J Phys Chem B 114:17128–17135. https://doi.org/10.1021/jp1097487

    Article  CAS  PubMed  Google Scholar 

  2. Liu X, Cole JM, Sing K (2013) Low solvent effects on the UV−Vis absorption and emission of optoelectronic Coumarins: a comparison of three empirical Solvatochromic models. J Phys Chem C 117:14731–14741. https://doi.org/10.1021/jp310397z

    Article  CAS  Google Scholar 

  3. Maity B, Chatterjee A, Seth D (2014) Photophysics of a Coumarin in different solvents: use of different Solvatochromic models. Photochem Photobiol 90:734–746. https://doi.org/10.1111/php.12258

    Article  CAS  PubMed  Google Scholar 

  4. Abdel-Mottaleb MSA, Antonious MS, Ali MMA, Ismail LFM, El-Sayed BA, Sherief AMK (1992) Photophysics and dynamics of coumarin laser dyes and their analytical implications. Proc Indian Acad Sci (Chem Sci) 104:185–196

    CAS  Google Scholar 

  5. Enculescu M, Evanghelidis A, Enculescu I (2018) White-light emission of dye-doped polymer submicronic fibers produced by electrospinning. Polymers 10:737. https://doi.org/10.3390/polym10070737

    Article  CAS  PubMed Central  Google Scholar 

  6. Finke JH, Richter C, Gothsch T, Kwade A, Büttgenbach S, Müller-Goymann CC (2014) Coumarin 6 as a fluorescent model drug: how to identify properties of lipid colloidal drug delivery systems via fluorescence spectroscopy? Eur J Lipid Sci Technol 116:1234–1246. https://doi.org/10.1002/ejlt.201300413

    Article  CAS  Google Scholar 

  7. Pretor S, Bartels J, Lorenz T, Dahl K, Finke JH, Peterat G, Krull R, Al-Halhouli AT, Dietzel A, Büttgenbach S, Behrends S, Reichl S, Müller-Goymann CC (2015) Cellular uptake of Coumarin-6 under microfluidic conditions into HCE-T cells from Nano scale formulations. Mol Pharm 12:34–45. https://doi.org/10.1021/mp500401t

    Article  CAS  PubMed  Google Scholar 

  8. Warde U, Sekar N (2017) Benzocoumarin-Styryl hybrids: aggregation and viscosity induced emission enhancement. J Fluoresc 27:1747–1758. https://doi.org/10.1007/s10895-017-2113-3

    Article  CAS  PubMed  Google Scholar 

  9. Avhad KC, Patil DS, Gawale YK, Chitrambalam S, Sreenath MC, Joe IH, Sekar N (2018) Large stokes shifted far-red to NIR emitting D-π-a Coumarins: combined synthesis, experimental, and computational investigation of spectroscopic and non-linear optical properties. Chem Select 3:4393–4405. https://doi.org/10.1002/slct.201800063

    Article  CAS  Google Scholar 

  10. Lanke SK, Sekar N (2016) AIE based Coumarin chromophore- evaluation and correlation between Solvatochromism and solvent polarity parameters. J Fluoresc 26:497–511. https://doi.org/10.1007/s10895-015-1735-6

    Article  CAS  PubMed  Google Scholar 

  11. Tathe AB, Sekar N (2016) Red emitting NLOphoric 3-styryl coumarins: experimental and computational studies. Opt Mater 51:121–127. https://doi.org/10.1016/j.optmat.2015.11.031

    Article  CAS  Google Scholar 

  12. Mataga N, Kaifu Y, Koizumi M (1956) Solvent effects upon fluorescence spectra and the dipole moments of excited molecules. Bull Chem Soc Jpn 29:465–470. https://doi.org/10.1246/bcsj.29.465

    Article  CAS  Google Scholar 

  13. Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94: 2319–2358. 10.1009–2665/94/0794–2319

  14. Kamlet MJ, Taft RW (1976) The solvatochromic comparison method. I. the β-scale of solvent hydrogen bond acceptor (HBA) basicities. J Am Chem Soc 98:377–383. https://doi.org/10.1021/ja00418a009

    Article  CAS  Google Scholar 

  15. Catalàn J (2009) Toward a generalized treatment of the solvent effect based on four empirical scales: Dipolarity (SdP, a new scale), polarizability (SP), acidity (SA), and basicity (SB) of the medium. J Phys Chem B 113:5951–5960. https://doi.org/10.1021/jp8095727

    Article  CAS  PubMed  Google Scholar 

  16. Gieseking RL, Mukhopadhyay S, Risko C, Brédas J-L (2014) Impact of the nature of the excited-state transition dipole moments on the third-order nonlinear optical response of Polymethine dyes for all-optical switching applications. ACS Photonics 1:261–269. https://doi.org/10.1021/ph4001444

    Article  CAS  Google Scholar 

  17. Liu X, Cole JM, Waddell PG, Lin T-C, Radia J, Zeidler A (2012) Molecular origins of optoelectronic properties in Coumarin dyes:toward designer solar cell and laser applications. J Phys Chem A 116:727–737. https://doi.org/10.1021/jp209925y

    Article  CAS  PubMed  Google Scholar 

  18. Hara K, Sato T, Katoh R, Furube A, Ohga Y, Shinpo A, Suga S, Sayama K, Sugihara H, Arakawa H (2003) Molecular Design of Coumarin Dyes for efficient dye-sensitized solar cells. J Phys Chem B 107:597–606. https://doi.org/10.1021/jp026963x

    Article  CAS  Google Scholar 

  19. Padalkar VS, Patil VS, Gupta VD, Phatangare KR, Umape PG, Sekar N (2011) Synthesis, characterization, thermal properties, and antimicrobial activities of 5-(Diethylamino)-2-(5-nitro-1H-benzimidazol-2-yl)phenol and its transition metal complexes. ISRN Org Chem 2011:738361. https://doi.org/10.5402/2011/738361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu T, Zhao M, Li A, Zhao Y, Zhang H, Fan D (2013) Synthesis and photoluminescent properties of 7-N,N-diphenylamino-3- benzoheterocyclic coumarin derivatives. Res Chem Intermed 39:2259–2266. https://doi.org/10.1007/s11164-012-0755-y

    Article  CAS  Google Scholar 

  21. Yin H, Zhang B, Yu H, Zhu L, Feng Y, Zhu M, Guo Q, Meng X (2015) Two-photon fluorescent probes for biological Mg2+ detection based on 7-substituted Coumarin. J Org Chem 80:4306–4312. https://doi.org/10.1021/jo502775t

    Article  CAS  PubMed  Google Scholar 

  22. Raju BB, Costa SMB (1999) Photophysical properties of 7-diethylaminocoumarin dyes in dioxane-water mixtures: hydrogen bonding, dielectric enrichment and polarity effects. Phys Chem Chem Phys 1:3539–3547

    Article  Google Scholar 

  23. Satpati AK, Kumbhakar M, Nath S, Pal H (2009) Photophysical properties of Coumarin-7 dye: role of twisted intramolecular charge transfer state in high polarity Protic solvents. Photochem Photobiol 85:119–129. https://doi.org/10.1111/j.1751-1097.2008.00405.x

    Article  CAS  PubMed  Google Scholar 

  24. Beens H, Knibbe H, Weller A (1967) Dipolar nature of molecular complexes formed in the excited state. J Chem Phys 47:1183–1184. https://doi.org/10.1063/1.1712006

    Article  CAS  Google Scholar 

  25. Mc Rae EG (1957) Theory of solvent effects on molecular electronic spectra. Frequency shifts. J Phys Chem 61:562–572. https://doi.org/10.1021/j150551a012

    Article  CAS  Google Scholar 

  26. Evale BG, Hanagodimath SM, Khan IA, Kulkarni MV (2009) Estimation of dipole moments of some biologically active coumarins by solvatochromic shift method based on solvent polarity parameter. EN Spectrochim Acta Part A 73:694–700. https://doi.org/10.1016/j.saa.2009.03.016

    Article  CAS  Google Scholar 

  27. Husaina MM, Sindhua R, Tandon HC (2012) Photophysical properties and estimation of ground and excited state dipole moments of 7-diethylamino and 7-diethylamino-4-methyl coumarin dyes from absorption and emission spectra. Eur J Chem 3:87–93. https://doi.org/10.5155/eurjchem.3.1.87-93.519

    Article  CAS  Google Scholar 

  28. Bakshiev NG (1964) Universal intermolecular interactions and their effect of the position of the electronic spectra of molecules in 2-component solutions.7. Theory (general case of isotopic solution). Opt. I Spektrosk 16:821–832

    Google Scholar 

  29. Kawski A (2002) On the estimation of excited-state dipole moments from solvatochromic shifts of absorption and fluorescence spectra. Z Naturforsch 57a:255–262

    Google Scholar 

  30. Reichardt C (2003) Solvent effects on the absorption spectra of organic compounds in solvents and solvent effects in organic chemistry, third edn. Wiley-VCH, Weinheim

  31. Ravi M, Soujanya T, Samanta A, Radhakrishnan TP, Excited-state dipole moments of some Coumarin dyes from a solvatochromic method using the solvent polarity parameter, E N T. J. Chem Soc Faraday Trans 91:2739. https://doi.org/10.1039/FT9959102739, 1995

  32. Coe BJ, Clays K, Foerier S, Verbiest T, Asselberghs I (2008) Redox-switching of nonlinear optical behavior in Langmuir - Blodgett thin films containing a ruthenium ( II ) ammine complex. J Am Chem Soc 130:3286–3287. https://doi.org/10.1021/ja711170q

    Article  CAS  PubMed  Google Scholar 

  33. Abbotto A, Beverina L, Bradamante S, Facchetti A, Klein C, Pagani GA, Redi-abshiro M (2003) A distinctive example of the cooperative interplay of structure and environment in tuning of intramolecular charge transfer in second-order nonlinear optical chromophores. Chem Eur J 9:1991–2007. https://doi.org/10.1002/chem.200204356

    Article  CAS  PubMed  Google Scholar 

  34. Oudar JL (1977) Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds. J Chem Phys 67:446–457. https://doi.org/10.1063/1.434888

    Article  CAS  Google Scholar 

  35. Carlotti B, Flamini R, Kikaš I, Mazzucato U, Spalletti A (2012) Intramolecular charge transfer, solvatochromism and hyperpolarizability of compounds bearing ethenylene or ethynylene bridges. Chem Phys 407:9–19. https://doi.org/10.1016/j.chemphys.2012.08.006

    Article  CAS  Google Scholar 

  36. Calaminici P, Jug K, Köster AM (1998) Density functional calculations of molecular polarizabilities and hyperpolarizabilities and hyperpolarizabilities. J Chem Phys 109:7756–7763. https://doi.org/10.1063/1.477421

    Article  CAS  Google Scholar 

  37. Meyers F, Marder SR, Pierce BM, Brédas JL (1994) Electric field modulated nonlinear optical properties of donor-acceptor polyenes:sum-over-states investigation of the relationship between molecular polarizabilities (alpha, beta, and gamma) and bond length alternation. J Am Chem Soc 116:10703–10714. https://doi.org/10.1021/ja00102a040

    Article  CAS  Google Scholar 

  38. Kothavale S, Jadhav AG, Sekar N (2017) Deep red emitting triphenylamine based coumarin-rhodamine hybrids with large stokes shift and viscosity sensing: synthesis, photophysical properties and DFT studies of their spirocyclic and open forms. Dyes Pigments 137:329–341. https://doi.org/10.1016/j.dyepig.2016.11.010

    Article  CAS  Google Scholar 

  39. Strickler SJ, Berg RA (1962) Relationship between absorption intensity and fluorescence lifetime of molecules. J Chem Phys 37:814–822. https://doi.org/10.1063/1.1733166

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Author Archana A. Bhagwat is thankful to UGC for research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagaiyan Sekar.

Electronic supplementary material

ESM 1

(DOCX 493 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhagwat, A.A., Sekar, N. Fluorescent 7-Substituted Coumarin Dyes: Solvatochromism and NLO Studies. J Fluoresc 29, 121–135 (2019). https://doi.org/10.1007/s10895-018-2316-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-018-2316-2

Keywords

Navigation