Skip to main content
Log in

Study of Photophysical Properties on Newly Synthesized Coumarin Derivatives

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Herein, we have studied the photophysical properties for three newly synthesized coumarin derivatives; 4-((2,6-dibromo-4-methylphenoxy)methyl)-2H-benzo[h]chromen-2-one (DMB), 4-((3,4-dihydro-6,7-dimethoxyisoquinolin-1-yl)methyl)-6-methyl-2H-chromen-2-one (DIM) and 4-((p-tolyloxy)methyl)-6-methoxy-2H-chromen-2-one (TMC). The absorption and emission spectra for above said molecules were recorded in different solvents at room temperature in order to calculate their ground and excited state dipole moments. The ground (μ g ) and excited state dipole (μ e ) moments of these coumarin derivatives were calculated using Lippert’s, Bakshiev’s and Kawski-Chamma-Viallet’s equations by the solvatochromic shift method, which involves a variation of Stokes shift with the solvent dielectric constant and refractive index. Ground state dipole moments (μ g ) were also calculated from the Guggenheim method using the dielectric constant and refractive index of the solute molecule. The value of ground state dipole moment obtained from these two methods is well correlated. Further, it is notified that the excited state dipole moment is larger than the ground state dipole moment for all three solute molecules. It inferred that the excited state for above said molecules is more polar than the ground state. The present investigations may shine in the design of nonlinear optical materials.

Graphical Abstract

The photophysical properties for novel coumarin derivatives were studied in different solvents.Ground and excited state dipole moments were estimated by the solvatochromic shift method. The excited state dipole moment is greater than the ground state dipole moment in systems studied. The excited state is more polar than the ground state. The present investigation may be shine in the design of non linear optical materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mortazavi MA, Knoesen A, Kowel ST, Henry RA, Hoover JM, Lindsay GA (1991) Appl Phys B Lasers Opt 53:287

    Article  Google Scholar 

  2. Moylan CR (1994) J Phys Chem 98:13513

    Article  CAS  Google Scholar 

  3. Belfield KD, Bonda MV, Liu Y, Przhonska OV (2003) J Phys Org Chem 16:69

    Article  CAS  Google Scholar 

  4. Trenor SR, Shultz AR, Love BJ, Long TE (2004) Chem Rev 104:3059

    Article  CAS  PubMed  Google Scholar 

  5. Zhao L, Vaupel M, Loy DA, Shea K (2008) J Chem Mater 20:1870

    Article  CAS  Google Scholar 

  6. Wolff T, Gorner. H (2010) J Photochem Photobiol A 209:219

    Article  CAS  Google Scholar 

  7. Obi M, Morino S, Ichimura K (1999) Chem Mater 11:656

    Article  CAS  Google Scholar 

  8. Traeger J, Heinzer J, Kim H, Hampp N (2008) Macromol Biosci 8:177

    Article  CAS  Google Scholar 

  9. Iliopoulos K, Krupka O, Gindre D, Salle M (2010) J Am Chem Soc 132:14343

    Article  CAS  PubMed  Google Scholar 

  10. Jung HS, Kwon PS, Lee JW, Kim JI, Hong CS, Kim JW, Yan S, Lee JY, Lee JH, Joo T, Kim JS (2009) J Am Chem Soc 131:2008

    Article  CAS  PubMed  Google Scholar 

  11. Duarte FJ, Hillman LW (1990) Dye laser principles, with applications. Academic Press Inc., San Diego

    Google Scholar 

  12. Hara K, Kurashige M, Dan-oh Y, Kasada C, Shinpo A, Suga S, Sayama K, Arakawa H (2003) New J Chem 27:783

    Article  CAS  Google Scholar 

  13. Mishra A (2009) Angew Chem Int Ed 48:2474

    Article  CAS  Google Scholar 

  14. Zhao H (1997) J Med Chem 40:242

    Article  CAS  PubMed  Google Scholar 

  15. Kontogiorgis C, Hadjipavlou-Litina D (2003) J Enzym Inhib Med Chem 18:63

    Article  CAS  Google Scholar 

  16. Deng RW (1992) Soc Chim Belg 101:439

    Article  CAS  Google Scholar 

  17. Basanagouda M, Jambagi VB, Barigidad NN, Laxmeshwar SS, Devaru V, Narayanachar (2014) Eur J Med Chem 74:225

    Article  CAS  PubMed  Google Scholar 

  18. Hurry RG, Ananthanaraxan C, Cortz TP, Schmolka S (1998) J Org Chem 3936

  19. Chemla DS, Zyss J (1987) Non linear optical properties of organic molecules and crystals. Academic, New York

    Google Scholar 

  20. Ravi M, Soujanya T, Samanta A (1995) Faraday Trans 2739

  21. Czella J (1961) Chimia (Aarau) 15:26

    Google Scholar 

  22. Lombardi JR (1970) J Am Chem Soc 92:1831

    Article  CAS  Google Scholar 

  23. Hass MP, Warman JM (1982) Chem Phys 73:35

    Article  Google Scholar 

  24. Lippert E (1955) Z Naturforsch 541

  25. Bakshiev NG (1964) Opt Spectrosc 16:821

    Google Scholar 

  26. Kawski A (1966) Acta Phys Pol 29:507

    CAS  Google Scholar 

  27. Thipperudrappa J, Raghavendra UP, Basanagouda M (2015) Specrochim Acta A 136:1475

    Article  CAS  Google Scholar 

  28. Joshi S, Kumari S, Sarmah A, Sakhuja R, Pant DD (2016) J Mol Liq 222:253

    Article  CAS  Google Scholar 

  29. Desai VR, Hunagund SM, Basanagouda M, Kadadevarmath JS, Thipperudrappa J, Sidarai AH (2017) J Mol Liq 225:613

    Article  CAS  Google Scholar 

  30. Desai VR, Sidarai AH, Hunagund SM, Basanagouda M, Melavanki RM, Fattepur RH, Kadadevarmath JS (2016) J Mol Liq 223:141

    Article  CAS  Google Scholar 

  31. Pandey N, Gahlaue R, Arora P, Joshi NK, Joshi HC, Pant S (2014) J Mol Struct 1061:175

    Article  CAS  Google Scholar 

  32. Desai VR, Hunagund SM, Basanagouda M, Kadadevarmath JS, Sidarai AH (2016) J Fluoresc 26:1391

    Article  CAS  PubMed  Google Scholar 

  33. Muddapur GV, Melavanki RM, Patil PG, Nagaraja D, Patil NR (2016) J Mol Liq 224:201

    Article  CAS  Google Scholar 

  34. Basavaraja J, Inamdar SR, Sureshkumar HM (2015) Spectrochim Acta A Mol Biomol Spectrosc 137:527

    Article  CAS  PubMed  Google Scholar 

  35. Raghavendra UP, Basanagouda M, Melavanki RM, Fattepur RH, Thipperudrappa J (2015) J Mol Liq 202:9

    Article  CAS  Google Scholar 

  36. Basanagouda M, Kulkarni MV, Sharma D, Gupta VK, Pranesha P, Sandhyarani VP, Rasal (2009) J Chem Sci 121:485

    Article  CAS  Google Scholar 

  37. Jadhav VB, Nayak SK, Guru TN, Row, Kulkarni MV (2010) Eur J Med Chem 45:3575

    Article  CAS  PubMed  Google Scholar 

  38. Edward JT (1970) J Chem Educ 47

  39. Guggenheim EA (1949) Trans Faraday Soc 45:714

    Article  CAS  Google Scholar 

  40. Chikkur GC, Umakantha N (1976) J Phys Soc Jpn 40:1145

    Article  CAS  Google Scholar 

  41. Homocianu M, Airinei A, Ortansa Dorohoi D (2011) J Adv Res Phys 2:011105

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to the technical staff of USIC, Karnatak University Dharwad for recording absorption and fluorescence spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok H. Sidarai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidarai, A.H., Desai, V.R., Hunagund, S.M. et al. Study of Photophysical Properties on Newly Synthesized Coumarin Derivatives. J Fluoresc 27, 2223–2229 (2017). https://doi.org/10.1007/s10895-017-2163-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2163-6

Keywords

Navigation