Skip to main content
Log in

Biophysical Studies on the Interactions of a Classic Mitochondrial Uncoupler with Bovine Serum Albumin by Spectroscopic, Isothermal Titration Calorimetric and Molecular Modeling Methods

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The interaction between a classic uncoupler (2,4-dinitrophenol, DNP) and bovine serum albumin (BSA) was investigated by fluorescence spectroscopy under the physiological conditions. The fluorescence quenching constants were calculated by the Stern-Volmer equation, and based upon the temperature dependence of quenching constants, it was proved that DNP caused a static quenching of the intrinsic fluorescence of BSA. Owing to the static quenching mechanism, different associative binding constants at various temperatures were determined and thus the thermodynamic parameters, namely enthalpy (ΔH = −21.12 kJ mol−1) and entropy changes (ΔS = 23.51 J mol−1 K−1) could be calculated based on the binding constants. Moreover, the enthalpy and entropy changes are consistent with the “Enthalpy-Entropy Compensation” equation obtained from our previous work. The negative enthalpy and positive entropy indicated that the electrostatic interactions played a major role in DNP-BSA binding process. Site marker competitive displacement experiments were carried out by using fluorescence and isothermal titration calorimetry (ITC) methods. These results showed that DNP bound with high affinity to Sudlow’s site I (subdomain IIA) of BSA. The distance (r = 3.78 nm) between donor (BSA) and acceptor (DNP) was obtained according to the mechanism of fluorescence resonance energy transfer (FRET). Furthermore, the results of synchronous fluorescence and circular dichroism (CD) spectroscopic studies indicated that the microenvironment and the secondary conformation of BSA were altered. The above results were supported by theoretical molecular modeling methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wesley RH (1996) Binding and transport of aluminum by serum proteins. Coord Chem Rev 149:347–365

    Google Scholar 

  2. He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358:209–215

    Article  PubMed  CAS  Google Scholar 

  3. Kandagal PB, Ashoka S, Seetharamappa J (2006) Study of the interaction of an anticancer drug with human and bovine serum albumin: spectroscopic approach. J Pharm Biomed Anal 41:393–399

    Article  PubMed  CAS  Google Scholar 

  4. Hu YJ, Liu Y, Pi ZB, Qu SS (2005) Interaction of cromolyn sodium with human serum albumin: a fluorescence quenching study. Bioorg Med Chem 13:6609–6614

    Article  PubMed  CAS  Google Scholar 

  5. Zhang YZ, Zhou B, Liu YX, Zhou CX, Ding XL, Liu Y (2008) Fluorescence study on the interaction of bovine serum albumin with P-Aminoazobenzene. J Fluoresc 18:109–118

    Article  PubMed  CAS  Google Scholar 

  6. Alarcon E, Edwards AM, Aspee A, Moran FE, Borsarelli CD, Lissi EA, Gonzalez-Nilo D, Poblete H, Scaiano JC (2010) Photophysics and photochemistry of dyes bound to human serum albumin are determined by the dye localization. Photochem Photobiol Sci 9:93–102

    Article  PubMed  CAS  Google Scholar 

  7. Xiao Q, Huang S, Liu Y, Tian FF, Zhu JC (2009) Thermodynamics, conformation and active sites of the binding of ZnNd hetero-bimetallic schiff base to bovine serum albumin. J Fluoresc 19:317–326

    Article  PubMed  CAS  Google Scholar 

  8. Hu YJ, Ou-Yang Y, Dai CM, Liu Y, Xiao XH (2010) Site-selective binding of human serum albumin by palmatine: spectroscopic approach. Biomacromolecules 11:106–112

    Article  PubMed  CAS  Google Scholar 

  9. Hu YJ, Liu Y, Wang J, Xiao X, Qu SS (2004) Study of the interaction between monoammonium glycyrrhizinate and bovine serum albumin. J Pharm Biomed Anal 36:915–919

    Article  PubMed  CAS  Google Scholar 

  10. Hou HN, Qi ZD, OuYang YW, Liao FL, Zhang Y, Liu Y (2008) Studies on interaction between vitamin B12 and human serum albumin. J Pharm Biomed Anal 47:134–139

    Article  PubMed  CAS  Google Scholar 

  11. Mei P, Zhang YZ, Zhang XP, Yan CX, Zhang H, Liu Y (2008) Spectroscopic investigation of the interaction between copper (II) 2-oxo-propionic acid salicyloyl hydrazone complex and bovine serum albumin. Biol Trace Elem Res 124:269–282

    Article  PubMed  CAS  Google Scholar 

  12. Qi ZD, Zhang Y, Liao FL, OuYang YW, Liu Y, Yang X (2008) Probing the binding of morin to human serum albumin by optical spectroscopy. J Pharm Biomed Anal 46:699–706

    Article  PubMed  CAS  Google Scholar 

  13. Qi ZD, Zhou B, Xiao Q, Shi C, Liu Y, Dai J (2008) Interaction of rofecoxib with human serum albumin: determination of binding constants and the binding site by spectroscopic methods. J Photoch Photobio A 193:81–88

    Article  CAS  Google Scholar 

  14. Zhang YZ, Dai J, Liu C, Zhang XP, Ding XL, Liu Y (2008) Interaction of N’-(1-carboxyethylidene) salicylhydrazide with bovine serum albumin. Chinese J Chem 26:1023–1029

    Article  CAS  Google Scholar 

  15. Zhang YZ, Chen XX, Dai J, Zhang XP, Liu YX, Liu Y (2008) Spectroscopic studies on the interaction of lanthanum(III) 2-oxo-propionic acid salicyloyl hydrazone complex with bovine serum albumin. Luminescence 23:150–156

    Article  PubMed  Google Scholar 

  16. Cheng XX, Liu Y, Zhou B, Xiao XH, Liu Y (2009) Probing the binding sites and the effect of berbamine on the structure of bovine serum albumin. Spectrochim Acta A 72:922–928

    Article  Google Scholar 

  17. Zhang YZ, Dai J, Xiang X, Li WW, Liu Y (2010) Studies on the interaction between benzidine and bovine serum albumin by spectroscopic methods. Mol Biol Rep 37:1541–1549

    Article  PubMed  CAS  Google Scholar 

  18. Hu YJ, Liu Y, Sun TQ, Bai AM, Lu JQ, Pi ZB (2006) Binding of anti-inflammatory drug cromolyn sodium to bovine serum albumin. Int J Biol Macromol 39:280–285

    Article  PubMed  CAS  Google Scholar 

  19. Han XL, Mei P, Liu Y, Xiao Q, Jiang FL, Li R (2009) Binding interaction of quinclorac with bovine serum albumin: a biophysical study. Spectrochim Acta A 74:781–787

    Article  Google Scholar 

  20. Hu YJ, Yu HG, Dong JX, Yang X, Liu Y (2006) Spectroscopic studies on the interaction between 3, 4, 5-trimethoxybenzoic acid and bovine serum albumin. Spectrochim Acta A 65:987–991

    Google Scholar 

  21. Hu YJ, Liu Y, Shen XS, Fang XY, Qu SS (2005) Studies on the interaction between 1-hexylcarbamoyl-5-fluorouracil and bovine serum albumin. J Mol Struct 738:143–147

    Article  CAS  Google Scholar 

  22. Hu YJ, Liu Y, Zhang LX, Zhao RM, Qu SS (2005) Studies of interaction between colchicine and bovine serum albumin by fluorescence quenching method. J Mol Struct 750:174–178

    Article  CAS  Google Scholar 

  23. Zhang YZ, Zhou B, Zhang XP, Huang P, Li CH, Liu Y (2009) Interaction of malachite green with bovine serum albumin: determination of the binding mechanism and binding site by spectroscopic methods. J Hazard Mater 163:1345–1352

    Article  PubMed  CAS  Google Scholar 

  24. Zhang YZ, Dai J, Liu C, Zhang XP, Yang X, Liu Y (2008) Studies of the interaction between Sudan I and bovine serum albumin by spectroscopic methods. J Mol Struct 888:152–159

    Article  CAS  Google Scholar 

  25. Zhang YZ, Xiang X, Mei P, Dai J, Zhang LL, Liu Y (2009) Spectroscopic studies on the interaction of congo red with bovine serum albumin. Spectrochim Acta A 72:907–914

    Article  Google Scholar 

  26. Hu YJ, Liu Y, Zhao RM, Dong JX, Qu SS (2006) Spectroscopic studies on the interaction between methylene blue and bovine serum albumin. J Photoch Photobio A 179:324–329

    Article  CAS  Google Scholar 

  27. Xiao Q, Huang S, Qi ZD, Zhou B, He ZK, Liu Y (2008) Conformation, thermodynamics and stoichiometry of HSA adsorbed to colloidal CdSe/ZnS quantum dots. Biochim Biophys Acta 1784:1020–1027

    PubMed  CAS  Google Scholar 

  28. Dai J, Li CL, Zhang YZ, Xiao Q, Lei KL, Liu Y (2008) Effect of La3+ on heat production by mitochondria isolated from hybrid rice. Thermochim Acta 470:77–82

    Article  CAS  Google Scholar 

  29. Dai J, Liu Y, Zhu JC, Zhang YZ (2006) Microcalorimetric study on the effect of sodium arsenite on metabolic activity of mitochondria isolated from Carassius auratus liver tissue. Chin J Chem 24:997–1000

    Article  CAS  Google Scholar 

  30. Skulachev VP (1998) Uncoupling: new approaches to an old problem of bioenergetics. Biochim Biophys Acta 1363:100–124

    Article  PubMed  CAS  Google Scholar 

  31. Lim HW, Lim HY, Wong KP (2009) Uncoupling of oxidative phosphorylation by curcumin: implication of its cellular mechanism of action. Biochem Biophys Res Commun 389:187–192

    Article  PubMed  CAS  Google Scholar 

  32. McLaughlin S (1972) The mechanism of action of DNP on phospholipid bilayer membranes. J Membr Biol 9:361–372

    Article  PubMed  CAS  Google Scholar 

  33. Wallace KB, Starkov AA (2000) Mitochondrial targets of drug toxicity. Annu Rev Pharmacol Toxicol 40:353–388

    Article  PubMed  CAS  Google Scholar 

  34. Laiho KU, Trump BF (1975) Mitochondrial changes, ion and water shifts in the cellular injury of ehrlich ascites tumor cells. Beitr Pathol 155:237–247

    PubMed  CAS  Google Scholar 

  35. Skulachev VP (1997) In: Papa S, Guerrieri F, Tager J (eds) Frontiers of cellular bioenergetics: molecular biology, biochemistry and physiology. Plenum, London

    Google Scholar 

  36. Singh RB, Mahanta S, Bagchi A, Guchhait N (2009) Interaction of human serum albumin with charge transfer probe ethyl ester of N,N-dimethylamino naphthyl acrylic acid: an extrinsic fluorescence probe for studying protein micro-environment. Photochem Photobiol Sci 8:101–110

    Article  PubMed  CAS  Google Scholar 

  37. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Plenum, New York, pp 239–240

    Google Scholar 

  38. Leckband D (2000) Measuring the forces that control protein interactions. Annu Rev Biophys Biomol Struct 29:1–26

    Article  PubMed  CAS  Google Scholar 

  39. Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102

    Article  PubMed  CAS  Google Scholar 

  40. Klotz IM, Urquhart JM (1949) The binding of organic ions by proteins, effect of temperature. J Am Chem Soc 71:847–851

    Article  CAS  Google Scholar 

  41. Kragh-Hansen U (1981) Molecular aspects of ligand binding to serum albumin. Pharmacol Rev 33:17–53

    PubMed  CAS  Google Scholar 

  42. Shcharbin D, Janicka M, Wasiak M (2007) Serum albumins have five sites for binding of cationic dendrimers. Biochim Biophys Acta 1774:946–951

    PubMed  CAS  Google Scholar 

  43. Kang J, Liu Y, Xie MX, Li S, Jiang M, Wang YD (2004) Interaction of human serum albumin with chlorogenic acid and ferulic acid. Biochim Biophys Acta 1674:205–214

    PubMed  CAS  Google Scholar 

  44. Sudlow G, Birkett DJ, Wade DN (1976) Further characterization of specific drug binding sites on human serum albumin. Mol Pharmacol 12:1052–1061

    PubMed  CAS  Google Scholar 

  45. Cooper A (1999) Thermodynamic analysis of biomolecular interactions. Curr Opin Chem Biol 3:557–563

    Article  PubMed  CAS  Google Scholar 

  46. Frazier RA, Papadopoulou A, Green RJ (2006) Isothermal titration calorimetry study of epicatechin binding to serum albumin. J Pharm Biomed Anal 41:1602–1605

    Article  PubMed  CAS  Google Scholar 

  47. Chekmeneva E, Diaz-Cruz JM, Arino C, Esteban M (2009) Binding of Hg2+ with phytochelatins: study by differential pulse voltammetry on rotating au-disk electrode, electrospray ionization mass-spectrometry, and isothermal titration calorimetry. Environ Sci Technol 43:7010–7015

    Article  PubMed  CAS  Google Scholar 

  48. Turnbill WB, Daranas AH (2003) On the value of c: can low affinity systems be studied by isothermal titration calorimetry? J Am Chem Soc 125:14859–14866

    Article  Google Scholar 

  49. Förster T (1965) In: Sinanoglu O (ed) Delocalized excitation and excitation transfer, modern quantum chemistry, vol. 3. Academic, New York, pp 93–137

    Google Scholar 

  50. Cyril L, Earl JK, Sperry WM (1961) Biochemists’ handbook. E. &F. N. Spon, London

    Google Scholar 

  51. Valeur B (2001) Molecular fluorescence: principles and applications. Wiley, New York

    Google Scholar 

  52. Abert WC, Gregory WM, Allan GS (1993) The binding interaction of coomassie blue with proteins. Anal Biochem 213:407–413

    Article  Google Scholar 

  53. Miller JN (1979) Recent advances in molecular luminescence analysis. Proc Anal Div Chem Soc 16:203–208

    CAS  Google Scholar 

  54. Charbonneau DM, Tajmir-Riahi H (2010) Study on the interaction of cationic lipids with bovine serum albumin. J Phys Chem B 114:1148–1155

    Article  PubMed  CAS  Google Scholar 

  55. Lu ZX, Cui T, Shi QL (1987) Application of circular dichroism and optical rotatory dispersion in molecular biology, 1st edn. Science, Beijing, pp 79–82

    Google Scholar 

  56. Sreerama N, Woody RW (1993) A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal Biochem 209:32–44

    Article  PubMed  CAS  Google Scholar 

  57. Whitmore L, Wallace BA (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 32:W668–W673

    Article  PubMed  CAS  Google Scholar 

  58. Cui FL, Fan J, Hu ZD (2004) Interactions between 1-benzoyl-4-p-chlorophenyl thio-semicarbazide and serum albumin: investigation by fluorescence spectroscopy. Bioorg Med Chem 12:151–157

    Article  PubMed  CAS  Google Scholar 

  59. Bhattacharya B, Nakka S, Guruprasad L, Samanta A (2009) Interaction of bovine serum albumin with dipolar molecules: fluorescence and molecular docking studies. J Phys Chem B 113:2143–2150

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Pierre D. Harvey of Université de Sherbrooke for reading the manuscript. The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Grant No. 20873096 and 20921062) and the Research Foundation of Wuhan University (Grant No. 20082030201000013)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Li, JH., Ge, YS. et al. Biophysical Studies on the Interactions of a Classic Mitochondrial Uncoupler with Bovine Serum Albumin by Spectroscopic, Isothermal Titration Calorimetric and Molecular Modeling Methods. J Fluoresc 21, 475–485 (2011). https://doi.org/10.1007/s10895-010-0733-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0733-y

Keywords

Navigation