Skip to main content
Log in

Thermodynamics, Conformation and Active Sites of the Binding of Zn–Nd Hetero-bimetallic Schiff Base to Bovine Serum Albumin

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The interactions between N,N′-di(2-hydroxy-3-methyoxy-phenyl-1-methylene)-o-phenyldiamine-mone Zn(II), Nd(III) nitrate (2LZnNd) and bovine serum albumin (BSA) was investigated by various spectroscopic techniques under physiological conditions. It was proved that the fluorescence quenching of BSA by 2LZnNb was a result of the formation of a non-fluorescent complex with the binding constants of 3.15 × 105; 2.72 × 105 and 2.44 × 105 M–1 at 298 K, 304 K and 310 K, respectively. A marked increase in the fluorescence anisotropy in the proteinous environments indicates that BSA introduces motional restriction on the drug molecule. The corresponding thermodynamics parameters ΔH and ΔS were calculated to be –16.36 kJ mol–1 and 43.48 J mol–1 K–1 via van’t Hoff equation. Moreover, the competitive probes experiment revealed that the binding location of 2LZnNb to BSA is in the hydrophobic pocket of site II. The effect of 2LZnNb on the conformation of BSA has been analyzed by means of CD spectrum and three-dimensional fluorescence spectra. The results indicate that the conformation of BSA molecules was changed in the presence of 2LZnNb Schiff base.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhong X, Yi J, Sun J, Wei HL, Liu WS, Yu KB (2006) Synthesis and crystal structure of some transition metal complexes with a novel bis-Schiff base ligand and their antitumor activities. Eur J Med Chem 41:1090–1092

    Article  PubMed  CAS  Google Scholar 

  2. Yang ZY, Yang RD, Li FS, Yu KB (2000) Crystal structure and antitumor activity of some rare earth metal complexes with Schiff base. Polyhedron 19:2599–2604

    Article  CAS  Google Scholar 

  3. Wang BD, Yang ZY, Wang Q, Cai TK, Crewdson P (2006) Synthesis, characterization, cytotoxic activities, and DNA-binding properties of the La(III) complex with Naringenin Schiff-base. Bioorg Med Chem 14:1880–1888

    Article  PubMed  CAS  Google Scholar 

  4. Anacona JR, Bastardo E, Camus J (1999) Manganese(II) and palladium(II) complexes containing a new macrocyclic Schiff base ligand: antibacterial properties. Transition Met Chem 24(4):478–480

    Article  CAS  Google Scholar 

  5. Raman N, Kulandaisamy A, Thangaraja C (2004) Structural characterisation and electrochemical and antibacterial studies of Schiff base copper complexes. Transition Met Chem 29(2):129–135

    Article  CAS  Google Scholar 

  6. Chaviara AT, Cox PJ, Repana KH, Papi RM, Papazisis KT, Zambouli D, Kortsaris AH, Kyriakidis DA, Bolos CA (2004) Copper(II) Schiff base coordination compounds of dien with heterocyclic aldehydes and 2-amino-5-methyl-thiazole: synthesis, characterization, antiproliferative and antibacterial studies. Crystal structure of CudienOOCl(2). J Inorg Biochem 98(8):1271–1283

    Article  PubMed  CAS  Google Scholar 

  7. Chohan ZH (2001) Praveen M Synthesis, characterization, coordination and antibacterial properties of novel asymmetric 1,1′-disubstituted ferrocene-derived Schiff-base ligands and their Co(II), Cu(II) Ni(II) and Zn(II) complexes, M. Praveen. Appl Organomet Chem 15(7):617–625

    Article  CAS  Google Scholar 

  8. Denardo GL, Mirik GR, Kroger LA, Donnel RTO, Meares CF, Denardo SL (1996) Antibody responses to macrocycles in lymphoma. J Nucl Med 37(3):451–456

    PubMed  CAS  Google Scholar 

  9. Chohan ZH, Pervez HY, Rauf A, Scozzafava A, Supuran CT (2002) Antibacterial Co(II), Cu(II), Ni(II) and Zn(II) complexes of thiadiazole derived furanyl, thiophenyl and pyrrolyl Schiff bases. J Enzyme Inhib Med Chem 17(2):117–122

    Article  PubMed  CAS  Google Scholar 

  10. Wang Y, Yang ZY, Wang BD (2005) Synthesis, characterization and anti-oxidative activity of cobalt(II), nickel(II) and iron(II) Schiff base complexes. Transition Met Chem 30(7):879–883

    Article  CAS  Google Scholar 

  11. Jain M, Singh RV (2003) Spectral and antimicrobial studies of organosilicon(IV) complexes of a bidentate Schiff base having nitrogen-nitrogen donor system. Main Group Met Chem 26:237–246

    CAS  Google Scholar 

  12. Ali MA, Mirza AH, Butcher RJ, Tarafder MTH, Keat TB, Ali AM (2002) Biological activity of palladium(II) and platinum(II) complexes of the acetone Schiff bases of S-methyl- and S-benzyldithiocarbazate and the X-ray crystal structure of the [Pd(asme)2] (asme = anionic form of the acetone Schiff base of S-methyldithiocarbazate) complex. J Inorg Biochem 92:141–148

    Article  PubMed  Google Scholar 

  13. El-Wahab ZHA, El-Sarrag MR (2004) Derivatives of phosphate Schiff base transition metal complexes: synthesis, studies and biological activity. Spectrochim Acta A 60:271–277

    Article  CAS  Google Scholar 

  14. Chakrabortya J, Piletb G, Fallahc MSE, Ribasc J, Mitra S (2007) Synthesis, characterisation and cryomagnetic studies of a novel homonuclear Nd(III) Schiff base dimmer. Inorg Chem Commun 10(4):489–493

    Article  CAS  Google Scholar 

  15. Boghaei DM, Farvid SS, Gharagozlou M (2007) Interaction of copper(II) complex of compartmental Schiff base ligand N,N′-bis (3 -hydroxysalicylidene)ethylenediamine with bovine serum albumin. Spectrochim Acta A 66:650–655

    Article  CAS  Google Scholar 

  16. Shrivastava HY, Kanthimathi M, Nair BU (1999) Interaction of Schiff base with bovine serum albumin: site-specific photocleavage, biochemical and biophysical research Communications. Biochem Biophys Res Commun 265:311–314

    Article  PubMed  CAS  Google Scholar 

  17. Sasnouski S, Zorin V, Khludeyev I, D’Hallewin MA, Guillemin F, Bezdetnaya L (2005) Investigation of Foscan interactions with plasma proteins. Biochim. Biophys. Acta 1725:394–402

    PubMed  CAS  Google Scholar 

  18. Hu YJ, Liu Y, Zhao RM, Dong JX, Qu SS (2004) Study of the interaction between monoammonium glycyrrhizinate and bovine serum albumin. J Photochem Photobiol A: Chem 179:324–329

    Article  CAS  Google Scholar 

  19. Qi ZD, Zhou B, Xiao Q, Shi C, Liu Y, Dai J (2008) Interaction of rofecoxib with human serum albumin: Determination of binding constants and the binding site by spectroscopic methods. J Photochem Photobiol A: Chem 193(2–3):81–88

    Article  CAS  Google Scholar 

  20. He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358:209–215

    Article  PubMed  CAS  Google Scholar 

  21. Dockal M, Carter DC, Rűker F (2000) Conformational transitions of the three recombinant domains of human serum albumin depending on pH. J Biol Chem 275(5):3042–3050

    Article  PubMed  CAS  Google Scholar 

  22. Olson RE, Christ DD (1996) Plasma protein binding of drugs. Annu Rep Med Chem 31:327–337

    Article  CAS  Google Scholar 

  23. Wang YQ, Zhang HM, Zhang GC (2006) Studies of the interaction between palmatine hydrochloride and human serum albumin by fluorescence quenching method. J Pharm Biomed Anal 41:1041–1046

    Article  PubMed  CAS  Google Scholar 

  24. Brockhinke A, Plessow R, Kohse-Höinghaus K, Herrmann C (2003) Structural changes in the Ras protein revealed by fluorescence spectroscopy. Phys Chem Chem Phys 5:3498–3506

    Article  CAS  Google Scholar 

  25. Lo WK, Wong WK, Guo JP, Wong WY, Li KF, Cheah KW (2004) Synthesis, Structures and Luminescent Properties of New Heterobimetallic ZN-4f Schiff Based Complexes. Inorg Chim Acta 357:4510–4521

    Article  CAS  Google Scholar 

  26. Bentley KL, Thompson LK, Klebe RJ, Horowitz PM (1985) Fluorescence polarization: a general method for measuring ligand binding and membrane microviscosity. BioTechniques 3:356–366

    CAS  Google Scholar 

  27. Lakowicz JR (2006) Principles of fluorescence spectroscopy 3rd ed. Plenum, New York

    Book  Google Scholar 

  28. Eftink MR (1991) Fluorescence quenching reactions: probing biological macromolecular structures. Plenum, New York

    Google Scholar 

  29. Lakowica JR, Weber G (1973) Quenching of fluorescence by oxygen, a probe for structural fluctuations in macromolecules. Biochemistry 12:4161–4170

    Article  Google Scholar 

  30. Lehrer SS (1971) The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 10:3254–3263

    Article  PubMed  CAS  Google Scholar 

  31. Wilson CJ, Copeland RA (1997) Spectroscopic characterization of arrestin interactions with competitive ligands: study of heparin and phytic acid binding. J Protein Chem 16:755–763

    Article  PubMed  CAS  Google Scholar 

  32. Murphy CB, Zhang Y, Troxler T, Ferry V, Martin JJ, Jones WE (2004) Probing Förster and Dexter energy-transfer mechanisms in fluorescent conjugated polymer chemosensors. J Phys Chem B 108:1537–1543

    Article  CAS  Google Scholar 

  33. Watt RM, Voss EW (1979) Solvent perturbation of the fluorescence of fluorescein bound to specific antibody. J Biol Chem 254:1684–1690

    PubMed  CAS  Google Scholar 

  34. Kusba J, Lakowicz JR (1999) Definition and properties of the emission anisotropy in the absence of cylindrical symmetry of emission field: application to the light quenching experiments. J Chem Phys 111:89–99

    Article  CAS  Google Scholar 

  35. He WY, Li Y, Si HZ, Dong YM, Sheng FL, Yao XJ, Hu ZD (2006) Molecular modeling and spectroscopic studies on the binding of guaiacol to human serum albumin. J Photochem Photobiol A 182:158–167

    Article  CAS  Google Scholar 

  36. Chakrabarty A, Mallick A, Haldar B, Das P, Chattopadhyay N (2007) Binding interaction of a biological photosensitizer with serum albumins: a biophysical study. Biomacromolecules 8:920–927

    Article  PubMed  CAS  Google Scholar 

  37. Leckband D (2000) Measuring the forces that control protein interactions. Annu Rev Biophys Biomol Struct 29:1–26

    Article  PubMed  CAS  Google Scholar 

  38. Ross PD, Subramanian S (1981) Thermodynamics of protein association reaction: forces contribution to stability. Biochemistry 20:3096–3102

    Article  PubMed  CAS  Google Scholar 

  39. Sklar LA, Hudson BS, Simoni RD (1977) Conjugated polyene fatty acids as fluorescent probes: synthetic phospholipid membrane studies. Biochemistry 16:819–828

    Article  PubMed  CAS  Google Scholar 

  40. Stryer L (1978) Fluorescence energy transfers as a spectroscopic ruler. Annu Rev Biochem 47:819–846

    Article  PubMed  CAS  Google Scholar 

  41. Long C, King EJ, Sperry WM (1961) Biochemists’ Handbook. E. & F. N. Spon Ltd, London

    Google Scholar 

  42. Valeur B, Brochon JC (1999) New Trends in Fluorescence Spectroscopy. Springer Press, Berlin

    Google Scholar 

  43. Valeur B (2001) Molecular Fluorescence: Principles and Applications. Wiley Press, New York

    Google Scholar 

  44. Epps DE, Raub TJ, Kézdy FJ (1995) A general wide-range spectrofluorometric method for measuring the site-specific affinities of drugs toward human serum albumin. Anal Biochem 227:342–350

    Article  PubMed  CAS  Google Scholar 

  45. Kosa T, Maruyama T, Otagiri M (1997) Species differences of serum albumin: I. Drug binding sites. Pharm Res 14:1607–1612

    Article  PubMed  CAS  Google Scholar 

  46. Bos OJM, Remijn JPM, Fischer MJE, Wilting J, Janssen LHM (1988) Location and characterization of the warfarin binding site of human serum albumin: a comparative study of two large fragments. Biochem Pharmacol 37:3905–3909

    Article  PubMed  CAS  Google Scholar 

  47. Epps DE, Raub TJ, Kézdy FJ (1995) A general, wide-rage spectrofluorometric method for measuring the site-specific affinities of drugs toward human serum albumin. Anal Biochem 227(2):342–350

    Article  PubMed  CAS  Google Scholar 

  48. Maes V, Engelborghs Y, Hoebeke J, Maras Y, Vercruyysse A (1981) Fluorimetric analysis of the binding of warfarin to human serum albumin. Mol Pharmacol 21:100–107

    Google Scholar 

  49. Noctor TAG, Pham CD, Kaliszan R, Wainer IW (1992) Stereochemical aspects of benzodiazepine binding to human serum albumin. I. Enantioselective high performance liquid affinity chromatography examination of chiral and achiral binding interactions between 1,4-benzodiazepines and human serum albumin. Mol Pharmacol 42:506–511

    PubMed  CAS  Google Scholar 

  50. Lu ZX, Cui T, Shi QL (1987) Application of Circular Dichroism and Optical Rotatory Dispersion in Molecular Biology 1st ed. Science, Beijing

    Google Scholar 

  51. Sreerama N, Woody RW (1993) A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal Biochem 209:32–44

    Article  PubMed  CAS  Google Scholar 

  52. Whitmore L, Wallace BA (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 32:W668–W673

    Article  PubMed  CAS  Google Scholar 

  53. Zhang YZ, Zhou B, Liu YX, Zhou CX, Ding XL, Liu Y (2008) Fluorescence study on the interaction of bovine serum albumin with p-aminoazobenzene. J Fluoresc 18:109–118

    Article  PubMed  CAS  Google Scholar 

  54. Tian JN, Liu JQ, Hu ZD, Chen XG (2005) Interaction of wogonin with bovine serum albumin. Bioorg Med Chem 13:4124–4129

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Rick W. K. Wong (Department of Chemistry, Hong Kong Baptist University) for providing 2LZnNd. We gratefully acknowledge financial support of Chinese 863 program (2007AA06Z407), National Natural Science Foundation of China (20873096, 30570015, 20621502), Research Foundation of Chinese Ministry of Education (20068-IRT0543), Natural Science Foundation of Hubei Province (2005ABC002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, Q., Huang, S., Liu, Y. et al. Thermodynamics, Conformation and Active Sites of the Binding of Zn–Nd Hetero-bimetallic Schiff Base to Bovine Serum Albumin. J Fluoresc 19, 317–326 (2009). https://doi.org/10.1007/s10895-008-0418-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-008-0418-y

Keywords

Navigation