Skip to main content
Log in

Heat Transfer Analysis of a Condensate Flow by VOF Method

  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

One of the interesting subjects in reactor design is about the condensate flow. In this investigation, turbulent film condensation on a horizontal elliptical tube is investigated using volume of fluid (VOF) method. Heat transfer after the separation point is considered. The turbulence model incorporated in this investigation is the realizable k-epsilon model. The results for circular tube are compared to that of other investigations available in the literatures. It is observed that an amount of approximately 11% decrease in the overall Nusselt number will happen for the elliptical tube with respect to a circular tube of the same area and the same approach velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Abbreviations

a :

ellipse semi-major axis length

A :

non dimensional number (Pr/Fr.Ja)

b :

ellipse semi-minor axis length

C f :

friction coefficient

C P :

specific heat

D :

effective diameter = 14 mm

E :

energy

Fr :

Froude number \(\left(\frac{Uo^2}{2.r.g}\right)\)

g :

force of gravity

h fg :

latent heat

Ja :

Jakob number \(\frac{C_{p}\Delta T}{h_{fg}}\)

k :

eccentricity (b/a)

K eff :

thermal conductivity

K :

turbulent kinetic energy

M :

mass

Nu :

Nusselt number

P :

absolute pressure

Pr :

Prandtl number \(\left(\frac{\mu_{L}.\varepsilon_{p}}{K_{\rm eff}}\right)\)

q :

heat transfer

T :

temperature

\(U_{\mathring{}}\) :

vapor free stream velocity

\(\overrightarrow{V}\) :

velocity vector

x,y :

ellipse Cartesian

Greek symbols:

 

α:

Volume fraction

δ:

condensate film thickness

ɛ:

dissipation energy

μ:

dynamic viscosity

ρ:

density

φ:

angle, Figure 1

Subscripts:

 

L:

liquid

t:

turbulent

v:

vapor

Superscripts:

 

′:

fluctuation

.:

rate

References

  1. Langeroudi and C. Aghanajafi, Int. J. Fusion Energy, September 2006

  2. Uehara H., Kurata C., Fujii T. (1972). Int. J. Heat Mass Transfer 15:235–246

    Article  Google Scholar 

  3. Rose J. W. (1984). Int. J. Heat Mass Transfer 27(1):39–47

    Article  Google Scholar 

  4. Kutateladze S. S., Gegonin I. I. (1985). Int. J. Heat Mass Transfer 28(5):1019–1030

    Article  Google Scholar 

  5. Honda H., Nozu S., Uchima B., Fujii T. (1986). Int. J. Heat Mass Transfer 29(3):429–438

    Article  Google Scholar 

  6. Marto P. J. (1992). Exp. Therm. Fluid Sci. 5:556–569

    Article  Google Scholar 

  7. M. Asbik, A. Daif, and P. K. Pandy, Condensation of downward flowing vapor on single horizontal cylinder or a bank of tubs with and without inundation, First ISHMT-ASME Heat and Mass Transfer Conference, ASME-Heat and Mass Transfer 94, Tata MC Graw-Hill publishing Compand limited, Bombay, 1994, pp. 475–480

  8. Asbik M., Daif A., Khmou A., Pandy P. K. (1999). Can. J. Chem. Eng. 77:554–561

    Article  Google Scholar 

  9. Michael A. G., Rose J. W., Daniel L. C. (1989). ASME J. Heat Transfer III:792–797

    Article  Google Scholar 

  10. Sarma P. K., Vijayalakshmi B., Mayinger F., Kakac S. (1998). Int. J. Heat Mass Transfer 41:537–545

    Article  MATH  Google Scholar 

  11. Homescu D., Pandy PK. (1999). Trans. ASME 121:874–885

    Google Scholar 

  12. S. W. J. Welch, J. Wilson. (2000). J. Comput. Phys. 160:662–682

    Article  MATH  Google Scholar 

  13. Lakehal D., Meirer M., Fulgosi M. (2002). Int. J. Heat Fluid Flow 23:242–257

    Article  Google Scholar 

  14. Memory S. B., Adams V. H., Marto P. J. (1997). Int. J. Heat Mass Transfer 40:3395–3406

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hesampour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aghanajafi, C., Hesampour, K. Heat Transfer Analysis of a Condensate Flow by VOF Method. J Fusion Energ 25, 219–223 (2006). https://doi.org/10.1007/s10894-006-9025-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-006-9025-6

Keywords

Navigation