Skip to main content
Log in

Heat transfer during film condensation inside plain tubes. Review of theoretical research

  • Review
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This paper critically reviews the existing theoretical models of heat transfer prediction in condensing inside plain tubes. More than 20 theoretical methods and correlations for heat transfer prediction during different modes of condensate film flow and phase distribution are considered. Lack of prior substantiation of correct application of different turbulent viscosity models for heat transfer calculation in condensing with and without influence of interfacial shear stress has been noted. The existing discrepancy of ±10% between different theoretical methods for heat transfer prediction during fully developed turbulence flow of condensate film without predominant influence of vapour velocity is shown. The dependence of theoretical methods on accuracy of frictional pressure drop determination in condensing with predominant influence of vapour velocity is highlighted. The method by Bae and others (1969) is recommended as the most correct theoretical method for prediction of heat transfer coefficients in annular flow of the phases in various heat exchangers, particularly in the evaporative systems of thermal desalinating plants, air conditioning systems, safety systems of reactors, heaters of power plants and condensers of cooling equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

c p :

specific heat, [J/(kgK)]

Cf :

friction coefficient

d :

inner diameter of tube, [m]

(dP/dz)f :

frictional pressure drop, [Pa/m]

Fr l :

liquid Froude number (\( =\frac{\rho_v\left({\rho}_l-{\rho}_v\right){u}_v^2}{\rho_l^2{\left({v}_lg\right)}^{2/3}} \))

G :

mass velocity, [kg/(m2s)]

g :

gravitational acceleration, [m/s2]

Ga :

Galileo number (\( ={\rho}_l\left({\rho}_l-{\rho}_v\right)g{d}^3/{\mu}_l^2 \))

h :

height of the stream, [m]

Ku :

Kutateladze number (=cplΔT/ΔvapH)

l :

length of the tube, [m]

Nud :

dimensionless Nusselt number (=αd/λl)

Nu f :

film Nusselt number, (\( =\frac{\alpha }{\lambda_l}{\left(\frac{v_l^2}{g}\right)}^{1/3} \))

Pr:

Prandtl number

q :

heat flux, [W/m2]

Re f :

film Reynolds number (=qz/(Δvapl))

Re l :

liquid Reynolds number (=G(1 − x)d/μl)

Re v :

vapour Reynolds number (=Gxd/μv)

t :

temperature, [°C]

u :

axial velocity, [m/s]

x :

mass vapour quality

X tt :

Martinelli parameter (=(μl/μv)0.1(ρv/ρl)0.5[(1 − x)/x]0.9)

y :

radial distance from the tube wall, [m]

z :

axial coordinate, [m]

α:

heat transfer coefficient, [W/(m2K)]

β:

parameter related to shear stress at the interphase, (=CfFrl/2)

δ:

thickness of the condensate film, [m]

ΔvapH :

heat of vapourization, [J/kg]

ΔT :

temperature difference (=ts-tw), [K]

ε t :

turbulent viscosity, [m2/s]

ε q :

eddy diffusivity of heat, [m2/s]

λ:

thermal conductivity, [W/(mK)]

μ:

dynamic viscosity, [Pa·s]

ν:

kinematic viscosity, [m2/s]

ρ:

density, [kg/m3]

τ f :

shear stress (\( ={C}_f{\rho}_v{u}_v^2/2 \)), [Pa]

τ g :

gravity force (=ρl), [Pa]

φ:

angular coordinate, [°]

Φ lo :

parameter that takes into account influence of two-phase flow

σ:

surface tension, [N/m]

eq :

equivalent

f :

film

l :

liquid

lo :

corresponding to the entire flow as a liquid

s :

saturated

str :

stream

strat :

stratified

t :

turbulent

v :

vapour

w :

wall

δ:

at the outer edge of the film

+ :

dimensionless symbol

References

  1. Tepe J, Mueller A (1947) Condensation and subcooling inside an inclined tube. Chem Eng Prog 43(5):267–278

    Google Scholar 

  2. Garcia-Valladares O (2003) Review of in-tube condensation heat transfer correlations for smooth and microfin tubes. Heat Transf Eng 24(4):6–24. https://doi.org/10.1080/01457630304036

    Article  Google Scholar 

  3. Cavallini A, Censi G, Del Col D, Doretti L, Longo G, Rossetto L, Zilio C (2003) Condensation inside and outside smooth and enhanced tubes—a review of recent research. Int J Refrig 26(4):373–392. https://doi.org/10.1016/s0140-7007(02)00150-0

    Article  Google Scholar 

  4. Thome JR (2016) Heat transfer engineering data book III, 3rd edn. Wolverine Tube, Inc., Decatur

    Google Scholar 

  5. Kandlikar S, Garimella S, Li D, Colin S, King M (2005) Heat transfer and fluid flow in minichannels and microchannels. Elsevier Science, Burlington

    Google Scholar 

  6. Dalkilic A, Wongwises S (2009) Intensive literature review of condensation inside smooth and enhanced tubes. Int J Heat Mass Transf 52(15–16):3409–3426. https://doi.org/10.1016/j.ijheatmasstransfer.2009.01.011

    Article  Google Scholar 

  7. Rifert V, Sereda V (2015) Condensation inside smooth horizontal tubes: part 1. Survey of the methods of heat-exchange prediction. Therm Sci 19(5):1769–1789. https://doi.org/10.2298/tsci140522036r

    Article  Google Scholar 

  8. Rifert V (1983) Vapor condensation inside horizontal pipes. J Eng Phys 44(6):700–710

    Google Scholar 

  9. Rifert V, Sereda V, Gorin V, Barabash P, Solomakha A (2018) Substantiation and the range of application of a new method for heat transfer prediction in condensing inside plain tubes. Energetika 64(3):146–154. https://doi.org/10.6001/energetika.v64i3.3807

    Article  Google Scholar 

  10. Akers W, Deans H, Crosser O (1959) Condensing heat transfer within horizontal tubes. Сhem Eng Prog Symp Ser 55:171–176

    Google Scholar 

  11. Ananiev E, Boyko L, Kruzhilin G (1961) Heat transfer in the presence of steam condensation in a horizontal tube. In: Int Heat Transf Conf pp 290–295

  12. Nusselt W (1916) Die Oberflachenkondensation des Wasserdampfes. VDI-Zeitschrift 60:542–575

    Google Scholar 

  13. Bae S, Maulbetsch JS, Rohsenow W (1969) Refrigerant forced-convection condensation inside horizontal tubes. Massachusetts Inst. of Tech., Cambridge Heat Transfer Lab

  14. Traviss D, Baron A, Rohsenow W (1971) Forced-convection condensation inside tubes. Massachusetts Inst. of Tech., Cambridge Heat Transfer Lab

  15. Dukler A (1960) Fluid mechanics and heat transfer in vertical falling-film systems. In: Chem. Eng. Prog. Symp. Ser., pp 1–10

  16. Karman T (1939) Analogy between fluid friction and heat transfer. Trans ASME 61:705–710

    MATH  Google Scholar 

  17. VDI Heat Atlas (1993) Verein Deutscher Ingeieur, ed. J.W. Fullarton, Düsseldorf. ISBN 3–18–400915–7

  18. Chen I, Kocamustafaogullari G (1987) Condensation heat transfer studies for stratified, cocurrent two-phase flow in horizontal tubes. Int J Heat Mass Transf 30(6):1133–1148. https://doi.org/10.1016/0017-9310(87)90043-3

    Article  MATH  Google Scholar 

  19. Moalem D, Sideman S (1976) Theoretical analysis of a horizontal condenser-evaporator tube. Int J Heat Mass Transf 19(3):259–270. https://doi.org/10.1016/0017-9310(76)90029-6

    Article  Google Scholar 

  20. Chaddock J (1957) Film condensation of vapor in horizontal tubes. Refrig Eng 65:41–44

    Google Scholar 

  21. Chato J (1962) Laminar condensation inside horizontal and inclined tube. ASHRAE J 4(2):52–60

    Google Scholar 

  22. Myers JA (1964) Condensation inside a horizontal pipe, studied with a heat meter. PhD Thesis, University of Kansas, Lawrence, Kansas

  23. Rifert V (1988) Heat transfer and flow modes of phases in laminar film vapour condensation inside a horizontal tube. Int J Heat Mass Transf 31(3):517–523. https://doi.org/10.1016/0017-9310(88)90033-6

    Article  Google Scholar 

  24. Deissler RG (1950) Analytical and experimental investigation of adiabatic turbulent flow in smooth tubes. Natl Advisory Comm for Aeronaut Tech Note, 2138, Washington, DC

  25. Kosky P, Staub F (1971) Local condensing heat transfer coefficients in the annular flow regime. AICHE J 17(5):1037–1043. https://doi.org/10.1002/aic.690170505

    Article  Google Scholar 

  26. Soliman M, Schuster J, Berenson P (1968) A general heat transfer correlation for annular flow condensation. J Heat Transf 90(2):267–274. https://doi.org/10.1115/1.3597497

    Article  Google Scholar 

  27. Cavallini A, Censi G, Del Col D, Doretti L, Longo G, Rossetto L (2001) Experimental investigation on condensation heat transfer and pressure drop of new HFC refrigerants (R134a, R125, R32, R410A, R236ea) in a horizontal smooth tube. Int J Refrig 24(1):73–87. https://doi.org/10.1016/S0140-7007(00)00070-0

    Article  Google Scholar 

  28. Friedel L (1978) Pressure-drop during gas-vapor-liquid flow in pipes. Chem Ing Tech 50(3):167–180

    Article  Google Scholar 

  29. Labuntsov D (1957) Heat transfer in film condensation of pure steam on vertical surfaces and horizontal tubes (in Russian). Heat Power Eng 4(7):72–79

    Google Scholar 

  30. Colburn A, Hougen O (1934) Design of cooler condensers for mixtures of vapors with noncondensing gases. Ind Eng Chem 26(11):1178–1182. https://doi.org/10.1021/ie50299a011

    Article  Google Scholar 

  31. Konsetov V (1961) Heat transfer during vapor condensation inside horizontal pipes (in Russian). Heat Power Eng 12:68–75

    Google Scholar 

  32. Kutateladze S, Gogonin I, Sosunov V (1983) A study of heat transfer in the condensation of an immobile vapor on bundles of horizontal tubes differing in diameter (in Russian). Heat Power Eng 3:885–894

  33. Page F, Schlinger W, Breaux D, Sage B (1952) Temperature gradients in turbulent gas streams. Point values of eddy conductivity and viscosity. In uniform flow between parallel plates. Ind Eng Chem 44(2):424–430. https://doi.org/10.1021/ie50506a059

    Article  Google Scholar 

  34. Driest E (1956) On turbulent flow near a wall. J Aeronaut Sci 23(11):1007–1011. https://doi.org/10.2514/8.3713

    Article  MATH  Google Scholar 

  35. Alhusseini A, Chen J (2000) Transport phenomena in turbulent falling films. Ind Eng Chem Res 39(6):2091–2100. https://doi.org/10.1021/ie9906013

    Article  Google Scholar 

  36. Mills A, Chung D (1973) Heat transfer across turbulent falling films. Int J Heat Mass Transf 16(3):694–696. https://doi.org/10.1016/0017-9310(73)90237-8

    Article  Google Scholar 

  37. Lamourelle A, Sandall O (1972) Gas absorption into a turbulent liquid. Chem Eng Sci 27(5):1035–1043. https://doi.org/10.1016/0009-2509(72)80018-6

    Article  Google Scholar 

  38. Chun K, Seban R (1971) Heat transfer to evaporating liquid films. J Heat Transf 93(4):391–396. https://doi.org/10.1115/1.3449836

    Article  Google Scholar 

  39. Seban R, Faghri A (1976) Evaporation and heating with turbulent falling liquid films. J Heat Transf 98(2):315–318. https://doi.org/10.1115/1.3450542

    Article  Google Scholar 

  40. Limberg H (1973) Wärmeübergang an turbulente und laminare rieselfilme. Int J Heat Mass Transf 16(9):1691–1702. https://doi.org/10.1016/0017-9310(73)90162-2

    Article  MATH  Google Scholar 

  41. Mudawwar I, El-Masri M (1986) Momentum and heat transfer across freely-falling turbulent liquid films. Int J Multiphase Flow 12(5):771–790. https://doi.org/10.1016/0301-9322(86)90051-0

    Article  MATH  Google Scholar 

  42. Shmerler J, Mudawwar I (1988) Local evaporative heat transfer coefficient in turbulent free-falling liquid films. Int J Heat Mass Transf 31(4):731–742. https://doi.org/10.1016/0017-9310(88)90131-7

    Article  Google Scholar 

  43. Park S-J, Chun M-H (1995) An improved heat transfer prediction model for turbulent falling liquid films with or without interfacial shear. Nucl Eng Technol 27(2):189–202

  44. Ueda H, Möller R, Komori S, Mizushina T (1977) Eddy diffusivity near the free surface of open channel flow. Int J Heat Mass Transf 20(11):1127–1136. https://doi.org/10.1016/0017-9310(77)90121-1

    Article  Google Scholar 

  45. Kays W (1972) Heat transfer to the transpired turbulent boundary layer. Int J Heat Mass Transf 15(5):1023–1044. https://doi.org/10.1016/0017-9310(72)90237-2

    Article  Google Scholar 

  46. Wilke W (1962) Wärmeübergang an Rieselfilme, VDI-Forsch, Heft

  47. Gimbutis G (1974) Heat transfer of a turbulent falling film. In: Proc. 5th Int. Heat Transfer Conf, pp 85–89

  48. Hubbard G, Mills A, Chung D (1976) Heat transfer across a turbulent falling film with cocurrent vapor flow. J Heat Transf 98(2):319. https://doi.org/10.1115/1.3450543

    Article  Google Scholar 

  49. Carpenter FG (1948) Heat transfer and pressure drop for condensing pure vapors inside vertical tubes at high vapor velocities. PhD Thesis, Dep Chem Eng, University of Delaware, Newark, DE

  50. Altman M, Staub F (1960) Norris S Local heat transfer and pressure drop for refrigerant-22 condensing in horizontal tubes. In: ASME-AIChE Heat Transfer Conference, Storrs

  51. Goodykoontz JH, Dorsch RG (1967) Local heat-transfer coefficients and static pressures for condensation of high-velocity steam within a tube, TN D-3953, NASA

  52. Brown WF, Goodykoontz JH (1967) Local heat-transfer and pressure distributions for freon-113 condensing in downward flow in a vertical tube, TN D-3952, NASA

  53. Rohsenow WM, Weber JH, Ling AT (1956) Effect of vapor velocity on laminar and turbulent film condensation. Trans ASME 78:1637–1643

  54. Brumfield L, Theofanous T (1976) On the prediction of heat transfer across turbulent liquid films. J Heat Transf 98(3):496–502. https://doi.org/10.1115/1.3450582

    Article  Google Scholar 

  55. Telles A, Dukler A (1970) Statistical characteristics of thin, vertical, wavy, liquid films. Ind Eng Chem Fundam 9(3):412–421. https://doi.org/10.1021/i160035a018

    Article  Google Scholar 

  56. Nouri-Borujerdi A (2001) Analytical modeling of convective condensation in smooth vertical tubes. Scientia Iranica 8(2):123–129

    MATH  Google Scholar 

  57. Dobson M, Chato J (1998) Condensation in smooth horizontal tubes. J Heat Transf 120(1):193–213. https://doi.org/10.1115/1.2830043

    Article  Google Scholar 

  58. Shah M (1979) A general correlation for heat transfer during film condensation inside pipes. Int J Heat Mass Transf 22(4):547–556. https://doi.org/10.1016/0017-9310(79)90058-9

    Article  Google Scholar 

  59. Kwon J, Ahn Y, Kim M (2001) A modeling of in-tube condensation heat transfer for a turbulent annular film flow with liquid entrainment. Int J Multiphase Flow 27(5):911–928. https://doi.org/10.1016/s0301-9322(00)00052-5

    Article  MATH  Google Scholar 

  60. Weigand B, Ferguson J, Crawford M (1997) An extended Kays and Crawford turbulent Prandtl number model. Int J Heat Mass Transf 40(17):4191–4196. https://doi.org/10.1016/s0017-9310(97)00084-7

    Article  Google Scholar 

  61. Rifert V, Sereda V, Barabash P, Gorin V (2017) Condensation inside smooth horizontal tubes: part 2. Improvement of heat exchange prediction. Therm Sci 21(3):1479–1489. https://doi.org/10.2298/TSCI140815045R

    Article  Google Scholar 

  62. Rifert V, Sereda V, Gorin V, Barabash P, Solomakha A (2018) Restoration of correctness and improvement of a model for film condensation inside tubes. Bulg Chem Commun 50(K):58–69

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Sereda.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rifert, V., Sereda, V. & Solomakha, A. Heat transfer during film condensation inside plain tubes. Review of theoretical research. Heat Mass Transfer 55, 3041–3051 (2019). https://doi.org/10.1007/s00231-019-02636-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-019-02636-8

Navigation