Skip to main content
Log in

Qualitative Variation in Proanthocyanidin Composition of Populus Species and Hybrids: Genetics is the Key

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The literature on proanthocyanidins (tannins) in ecological systems is dominated by quantitative studies. Despite evidence that the qualitative characteristics (subunit type, polymer chain length) of these complex polyphenolics are important determinants of biological activity, little is known about genetic and environmental controls on the type of proanthocyanidins produced by plants. We tested the hypothesis that genetics, season, developmental stage, and environment determine proanthocyanidin qualitative characteristics by using four Populus “cross types” (narrowleaf [P. angustifolia], Fremont [P. fremontii], F1 hybrids, and backcrosses to narrowleaf). We used thiolysis and HPLC analysis to characterize the proanthocyanidins, and found that genetics strongly control composition. The narrowleaf plants accumulate mixed procyanidin/prodelphinidins with average composition epicatechin11-epigallocatechin8-catechin2-catechin(terminal). Backcross genotypes produce mixed procyanidin/prodelphinidins similar to narrowleaf, while Fremont makes procyanidin dimers, and the F1 plants contain procyanidin heptamers. Less striking effects were noted for genotype × environment, while season and developmental zone had little effect on proanthocyanidin composition or chain length. We discuss the metabolic and ecological consequences of differences in condensed tannin qualitative traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrell, J., McDonald, E. P., and Lindroth, R. L. 2000. Effects of CO2 and light on tree phytochemistry and insect performance. OIKOS 88:259–272.

    Article  CAS  Google Scholar 

  • Arnold, T. M., and Schultz, J. C. 2002. Induced sink strength as a prerequisite for induced tannin biosynthesis in developing leaves of Populus. Oecologia 130:585–593.

    Article  Google Scholar 

  • Ayabe, S., and Akashi, T. 2006. Cytochrome P450s in flavonoid metabolism. Phytochem. Rev. 5:271–282.

    Article  CAS  Google Scholar 

  • Ayres, M. P., Clausen, T. P., Maclean, J. R., Redman, A. M., and Reichardt, P. B. 1997. Diversity of structure and antiherbivore activity in condensed tannins. Ecology 78:1696–1712.

    Article  Google Scholar 

  • Barbehenn, R. V., Jones, C. P., Hagerman, A. E., Karonen, M., and Salminen, J. 2006. Ellagitannins have greater oxidative activities than condensed tannins and galloyl gucoses at high pH: Potential impact on caterpillars. J. Chem. Ecol. 32:2253–2267.

    Article  CAS  PubMed  Google Scholar 

  • Coq, S., Souquet, J., Meudec, E., Cheynier, V., and Hattenschwiler, S. 2010. Interspecific variation in leaf letter tannins drives decomposition in a tropical rain forest of French Guiana. Ecology 91: 2080–2091.

    Article  PubMed  Google Scholar 

  • Crawford, D. J. 1974. A morphological and chemical study of Populus acuminata rydeberg. Brittonia 26:74–98.

    Article  CAS  Google Scholar 

  • Donaldson, J. R., Stevens, M. T., Barnhill, H. R., and Lindroth, R. L. 2006. Age-related shifts in leaf chemistry of clonal aspen (Populus tremuloides). J. Chem. Ecol. 32:1415–1429.

    Article  CAS  PubMed  Google Scholar 

  • Driebe, E. M., and Whitham, T. G. 2000. Cottonwood hybridization affects tannin and nitrogen content of leaf litter and alters decomposition. Oecologia 123:99–107.

    Article  Google Scholar 

  • Feeny, P. 1976. Plant apparency and chemical defense. Recent Adv. Phytochem. 10:1–40.

    CAS  Google Scholar 

  • Foss, L. K., and Rieske, L. K. 2003. Species-specific differences in oak foliage affect preference and performance of gypsy moth caterpillars. Ent. Exp. Appl. 108:87–93.

    Article  Google Scholar 

  • Greenaway, W., English, S., Wollenweber, E., and Whatley, F. R. 1989. Series of novel flavanones identified by gas chromatography-mass spectrometry in bud exudate of Populus fremontii and Populus maximowieczii. J. Chromatog. 481:352–357.

    Article  CAS  Google Scholar 

  • Gupta, R. K., and Haslam, E. 1978. Plant proanthocyanidins. Part 5. Sorghum polyphenols. J. Chem. Soc. Perk. I 1978:892–896.

    Article  Google Scholar 

  • Guyot, S., Marnet, N., and Drilleau, J. 2001a. Thiolysis-HPLC characterization of apple procyanidins covering a large range of polymerization states. J. Agric. Food Chem. 49:14–20.

    Article  CAS  PubMed  Google Scholar 

  • Guyot, S., Marnet, N., Sanoner, P., and Drilleau, J. 2001b. Direct thiolysis on crude apple materials for high-performance liquid chromatography characterization and quantification of polyphenols in cider apple tissues and juices. Meth. Enzymol. 335:57–70.

    Article  CAS  PubMed  Google Scholar 

  • Hagerman, A. E., and Butler, L. G. 1980. Condensed tannin purification and characterization of tannin-associated proteins. J. Agric. Food Chem. 28:947–952.

    Article  CAS  PubMed  Google Scholar 

  • Karonen, M., Ossipov, V., Ossipova, S., Kapari, L., Loponen, J., Matsumura, H., Kohno, Y., Mikami, C., Sakai, Y., Izuta, T., and Pihlaja, K. 2006. Effects of elevated carbon dioxide and ozone on foliar proanthocyanidins in Betula platyphylla, Betula eramnii, and Fagus crenata seedlings. J. Chem. Ecol. 32:1445–1458.

    Article  CAS  PubMed  Google Scholar 

  • Kolodzieg, H. 1990. Oligomeric flavan-3-ols from medicinal willow bark. Phytochemistry 29:955–960.

    Article  Google Scholar 

  • Koupai-Abyazani, M., McCallum, J., Muir, A. D., Bohm, B. A., Towers, G. H. N., and Gruber, M. Y. 1993a. Developmental changes in the composition of proanthocyanidins from leaves of sainfoin (Onobrychis viciifolia scop.) as determined by HPLC analysis. J. Agric. Food Chem. 41:1066–1070.

    Article  CAS  Google Scholar 

  • Koupai-Abyazani, M., Muir, A. D., Bohm, B. A., Towers, G. H. N., and Gruber, M. Y. 1993b. The proanthocyanidin polymers in some species of Onobrychis. Phytochemistry 34:113–117.

    Article  CAS  Google Scholar 

  • Kraus, T. E. C., Yu, Z., Preston, C. M., Dahlgren, R. A., and Zasoski, R. J. 2003. Linking chemical reactivity and protein precipitation to structural characteristics of foliar tannins. J. Chem. Ecol. 29:703–730.

    Article  CAS  PubMed  Google Scholar 

  • Laitinen, M., Julkunen-Tiitto, R., and Rousi, M. 2000. Variation in phenolic compounds within a birch (Betula pendula) population. J. Chem. Ecol. 26:1609–1623.

    Article  CAS  Google Scholar 

  • Laitinen, J., Julkunen-Tiitto, R., Rousi, M., Heinonen, A., and Tahvanainen, J. 2005. Ontogeny and evironment as determinats of the secondary chemistry of three species of white birch. J. Chem. Ecol. 31:2243–2270.

    Article  CAS  PubMed  Google Scholar 

  • Lindroth, R. L., Roth, S., and Nordheim, E. V. 2001. Genotypic variation in response of quaking aspen (Populus tremuloides) to atmospheric CO2 enrichment. Oecologia 126:371–379.

    Article  Google Scholar 

  • Lower, S. S., and Orians, C. M. 2003. Soil nutrients and water availability interact to influence willow growth and chemistry but not leaf beetle performance. Ent. Exp. Appl. 107:66–79.

    Google Scholar 

  • Monagas, M., Gomez-Cordoves, C., Bartolome, G., Laureano, O., and Dasilva, J. M. R. 2003. Monomeric, oligomeric, and polymeric flavan-3-ol composition of wines and grapes from Vitis vinifera L. cv. graciano, tempranillo, and cabernet sauvignon. J. Agric. Food Chem. 51:6475–6481.

    Article  CAS  PubMed  Google Scholar 

  • Nierop, K. G. J., Preston, C. M., and Verstraten, J. M. 2006. Linking the B ring hydroxylation pattern of condensed tannins to C, N and P mineralization. A case study using four tannins. Soil Biol. Biochem. 38:2794–2802.

    Article  CAS  Google Scholar 

  • Orians, C. M., Griffiths, M. E., Roche, B. M., and Fritz, R. S. 2000. Phenolic glycosides and condensed tannins in Salix sericea, S. eriocephala and their F1 hybrids: Not all hybrids are created equal. Biochem. Syst. Ecol. 28:619–632.

    Article  CAS  PubMed  Google Scholar 

  • Osier, T. L., and Lindroth, R. L. 2006. Genotype and environment determine allocation to and costs of resistance in quaking aspen. Oecologia 148:293–303.

    Article  PubMed  Google Scholar 

  • Porter, L. J., Hrstich, L. N., and Chan, B. C. 1986. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 25:223–230.

    Article  CAS  Google Scholar 

  • Rehill, B. J., Whitham, T. G., Martinsen, G. D., Schweitzer, J. A., Bailey, J. K., and Lindroth, R. L. 2006. Developmental trajectories in cottonwood phytochemistry. J. Chem. Ecol. 32:2269–2285.

    Article  CAS  PubMed  Google Scholar 

  • Salminen, J., Roslin, T., Karonen, M., Sinkkonen, J., Pihlaja, K., and Pulkkinen, P. 2004. Seasonal variation in the content of hydrolyzable tannins, flavonoid glycosides, and proanthocyanidins in oak leaves. J. Chem. Ecol. 30:1693–1711.

    Article  CAS  PubMed  Google Scholar 

  • Seitz, C., Ameres, S., and Forkmann, G. 2007. Identification of the molecular basis for the functional difference between flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase. FEBS Letters 581:3429–3434.

    Article  CAS  PubMed  Google Scholar 

  • Souquet, J. M., Cheynier, V., Brossaud, F., and Moutounet, M. 1996. Polymeric proanthocyanidins from grape skins. Phytochemistry 43:509–512.

    Article  CAS  Google Scholar 

  • Stafford HA (1990) Flavonoid metabolism. CRC Press, Boca Raton, FL, pp. 43–44.

    Google Scholar 

  • Stevens, M. L., and Lindroth, R. L. 2005. Induced resistance in the indeterminate growth of aspen (Populus tremuloides). Oecologia 145:298–306.

    Article  PubMed  Google Scholar 

  • Tsai, C., Harding, S. A., Jschaplinski, T. J., Lindroth, R. L., and Yuan, Y. 2006. Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus. New Phytologist 172:47–62.

    Article  CAS  PubMed  Google Scholar 

  • Xie, D., and Dixon, R. A. 2005. Proanthocyanidin biosynthesis—still more questions than answers? Phytochemistry 66:2127–2144.

    Article  CAS  PubMed  Google Scholar 

  • Yarnes, C. T., Boecklen, W. J., Tuominen, K., and Salminen, J. 2006. Defining phytochemical phenotypes: Size and shape analysis of phenolic compounds in oaks (fagaceae, quercus) of the chihuahuan desert. Can. J. Bot. 84:1233–1248.

    Article  Google Scholar 

  • Yarnes, C. T., Boecklen, W. J., and Salminen, J. 2008. No simple sum: Seasonal variation in tannin phenotypes and leaf-miners in hybrid oaks. Chemoecology 18:39–51.

    Article  CAS  Google Scholar 

  • Yoshida, T., Hatano, T., and Ito, H. 2005. High molecular weight plant polyphenols (tannins): Prospective functions. Recent Adv. Phytochem. 39:163–190.

    Article  CAS  Google Scholar 

  • Whitham, T.G., Bailey, J.K., Schweitzer, J.A., Shuster, S.M., Bangert, R.K., Leroy, C.J., Lonsdorf, E.V., Allan, G.H., Difazio, S.., Potts, B.M., Fischer, D.G., Gehring, C.A., Lindroth, R.L., Marks, J.C., Hart, S.C., Wimp, G.M., and Wooley, S.C. 2006. A framework for community and ecosystem genetics: from genes to ecosystems. Nat. Rev. Genet. 17: 510–523.

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to Kala Levine for acid butanol analyses, and to Michael Hughes (Statistical Consulting Center, Miami University) for assistance with the statistical analysis. Catechin trimer C-2 was a generous gift from H. H. Kolodziej. Gina Wimp, Brian Rehill, Liza Holeski, Tony Giuffre, and Adam Gusse helped collect and process the cottonwood leaf samples. J. Schweitzer, University of Tennessee, kindly provided the leaf outlines for Figure 5. Grant support: NSF REU DBI-0353915 (Miami University), the Miami University Undergraduate Summer Scholars Program, Agricultural Research Services Specific Cooperative Agreement with Miami University Number 58-1932-6-634 and NSF Frontiers in Integrative Biological Research, DEB-0425908 and NSF DEB-0841609 (University of Wisconsin-Madison).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann E. Hagerman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scioneaux, A.N., Schmidt, M.A., Moore, M.A. et al. Qualitative Variation in Proanthocyanidin Composition of Populus Species and Hybrids: Genetics is the Key. J Chem Ecol 37, 57–70 (2011). https://doi.org/10.1007/s10886-010-9887-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-010-9887-y

Key Words

Navigation