Skip to main content
Log in

Ellagitannins have Greater Oxidative Activities than Condensed Tannins and Galloyl Glucoses at High pH: Potential Impact on Caterpillars

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Plants synthesize a diversity of tannin structures but little is known about whether these different types have different oxidative activities in herbivores. Oxidative activities of hydrolyzable and condensed tannins were compared at pH 10 with two methods: EPR spectrometry was used to quantify semiquinone radicals in anoxic conditions and a spectrophotometric assay was used to measure the rate of browning of phenolics oxidized in ambient oxygen conditions. A little-studied group of hydrolyzable tannins (ellagitannins) contained the most active tannins examined, forming high concentrations of semiquinone radicals and browning at the highest rates. On average, galloyl glucoses and high-molecular-weight gallotannins had intermediate to low oxidative activities. Condensed tannins generally formed low levels of semiquinone radicals and browned most slowly. The results suggest that ellagitannin-rich plants have active oxidative defenses against herbivores, such as caterpillars, whereas the opposite may hold true for plants that contain predominantly condensed tannins or high-molecular-weight gallotannins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aerts, R. J., Barry, T. N., and McNabb, W. C. 1999. Polyphenols and agriculture: beneficial effects of proanthocyanidins in forages. Agric. Ecosyst. Environ. 75:1–12.

    Article  CAS  Google Scholar 

  • Appel, H. M. 1993. Phenolics in ecological interactions: the importance of oxidation. J. Chem. Ecol. 19:1521–1552.

    Article  CAS  Google Scholar 

  • Appel, H. M. and Martin, M. M. 1990. Gut redox conditions in herbivorous lepidopteran larvae. J. Chem. Ecol. 16:3277–3290.

    Article  CAS  Google Scholar 

  • Barbehenn, R. V., Cheek, S., Gasperut, A., Lister, E., and Maben, R. 2005. Phenolic compounds in red oak and sugar maple leaves have prooxidant activities in the midguts of Malacosoma disstria and Orgyia leucostigma caterpillars. J. Chem. Ecol. 31:969–988.

    Article  PubMed  CAS  Google Scholar 

  • Barbehenn, R. V., Poopat, U., and Spencer, B. 2003. Semiquinone and ascorbyl radicals in the gut fluids of caterpillars measured with EPR spectrometry. Insect Biochem. Mol. Biol. 33:125–130.

    Article  PubMed  CAS  Google Scholar 

  • Bors, W. and Michel, C. 1999. Antioxidant capacity of flavanols and gallate esters: Pulse radiolysis studies. Free Radic. Biol. Med. 27:1413–1426.

    Article  PubMed  CAS  Google Scholar 

  • Bors, W., Michel, C., and Stettmaier, K. 2000. Electron paramagnetic resonance studies of radical species of proanthocyanins and gallate esters. Arch. Biochem. Biophys. 374:347–355.

    Article  PubMed  CAS  Google Scholar 

  • Bors, W., Michel, C., and Stettmaier, K. 2001a. Structure–activity relationships governing antioxidant capacities of plant polyphenols. Methods Enzymol. 335:166–180.

    PubMed  CAS  Google Scholar 

  • Bors, W., Yeap Foo, L., Hertkorn, N., Michel, C., and Stettmaier, K. 2001b. Chemical studies of proanthocyanidins and hydrolyzable tannins. Antiox. Redox Signal. 3:995–1008.

    Article  CAS  Google Scholar 

  • Cao, G., Sofic, E., and Prior, R. L. 1997. Antioxidant and prooxidant behavior of flavonoids: structure–activity relationships. Free Radic. Biol. Med. 22:749–760.

    Article  PubMed  CAS  Google Scholar 

  • Chan, T., Galati, G., and O’Brien, P. J. 1999. Oxygen activation during peroxidase catalysed metabolism of flavones or flavanones. Chem.-Biol. Interact. 122:15–25.

    Article  PubMed  CAS  Google Scholar 

  • Cilliers, J. J. L. and Singleton, V. L. 1989. Nonenzymatic autoxidative phenolic browning reactions in a caffeic acid model system. J. Agric. Food Chem. 37:390–396.

    Article  Google Scholar 

  • Fukuhara, K., Nakanishi, I., Shimada, T., Ohkubo, K., Miyazaki, K., Hakamata, W., Urano, S., Ozawa, T., Okuda, H., Miyata, N., Ikota, N., and Fukuzumi, S. 2003. A planar catechin analogue as a promising antioxidant with reduced prooxidant activity. Chem. Res. Toxicol. 16:81–86.

    Article  PubMed  CAS  Google Scholar 

  • Fukumoto, L. R. and Mazza, G. 2000. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem. 48:3597–3604.

    Article  PubMed  CAS  Google Scholar 

  • Gant, T. W., Ramakrishna, R., Mason, R. P., and Cohen, G. M. 1988. Redox cycling and sulphydryl arylation; their relative importance in the mechanism of quinone cytotoxicity to isolated hepatocytes. Chem. Biol. Interact. 65:157–173.

    Article  PubMed  CAS  Google Scholar 

  • Grace, S. C., Yamasaki, H., and Pryor, W. A. 1999. Spin stabilizing approach to radical characterization of phenylpropanoid antioxidants: an ESR study of chlorogenic acid oxidation in the horseradish peroxidase, tyrosinase, and ferrylmyoglobin protein radical systems, pp. 435–450, in G. G. Gross, R. W. Hemingway, T. Yoshida, and S. J. Branham (eds.). Plant Polyphenols 2: Chemistry, Biology, Pharmacology, Ecology. Kluwer Academic/Plenum Publishers, New York.

    Google Scholar 

  • Gross, G. G. 1999. Biosynthesis of hydrolyzable tannins, pp. 799–826, in B. M. Pinto (ed.). Comprehensive Natural Products Chemistry, vol. 3, Elsevier, Amsterdam, the Netherlands.

    Google Scholar 

  • Guo, Q., Zhao, B., Shen, S., Hou, J., Hu, J., and Xin, W. 1999. ESR study on the structure–activity relationship of tea catechins and their epimers. Biochim. Biophys. Acta 1427:13–23.

    PubMed  CAS  Google Scholar 

  • Hagerman, A. E. and Butler, L. G. 1991. Tannins and lignins, pp. 355–388, in G. A. Rosenthal and M. R. Berenbaum (eds.). Herbivores: Their Interactions with Secondary Plant Metabolites. Second edition. Vol. I: The Chemical Participants. Academic Press, San Diego, CA, USA.

    Google Scholar 

  • Hagerman, A. E., Riedl, K. M., Jones, G. A., Sovik, K. N., Ritchard, N. T., Hartzfeld, P. W., and Riechel, T. L. 1998. High molecular weight plant polyphenolics (tannins) as biological antioxidants. J. Agric. Food Chem. 40:801–805.

    Google Scholar 

  • Hagerman, A. E. 1989. Chemistry of tannin–protein complexation, pp. 323–333, in R.W. Hemingway, and J.J. Karchesy, (eds.). Chemistry and Significance of Condensed Tannins. Plenum Publishing Corp., New York, NY, USA.

    Google Scholar 

  • Hagerman, A. E. and Butler, L. G. 1978. Protein precipitation method for the determination of tannins. J. Agric. Food Chem. 26:809–812.

    Article  CAS  Google Scholar 

  • Hagerman, A. E. and Robbins, C. T. 1993. Specificity of tannin binding salivary proteins relative to diet selection by mammals. Can. J. Zool. 71:628–633.

    Article  CAS  Google Scholar 

  • Hatano, T., Edamatsu, R., Hiramatsu, M., Mori, A., Fujiat, Y., Yasuhara, T., Yoshida, T., and Okuda, T. 1989. Effects of the interaction of tannins with co-existing substances. VI. Effects of tannins and related polyphenols on superoxide anion radical, and on 1,1-diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. 37:2016–2021.

    CAS  Google Scholar 

  • Hodnick, W. F., Milosavljevic, E. B., Nelson, J. H., and Pardini, R. S. 1988. Relationship between redox potentials, inhibition of mitochondrial respiration, and production of oxygen radicals by flavonoids. Biochem. Pharmacol. 37:2607–2611.

    Article  PubMed  CAS  Google Scholar 

  • Ito, H., Yamaguchi, K., Kim, T.-H., Khennouf, S., Gharzouli, K., and Yoshida, T. 2002. Dimeric and trimeric hydrolyzable tannins from Quercus coccifera and Quercus suber. J. Nat. Prod. 65:339–345.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, K. S. and Barbehenn, R. V. 2000. Oxygen levels in the gut lumens of herbivorous insects. J. Insect Physiol. 46:897–903.

    Article  PubMed  CAS  Google Scholar 

  • Jovanovic, S. V., Hara, Y., Steenken, S., and Simic, M. G. 1995. Antioxidant potential of gallocatechins. A pulse radiolysis and laser photolysis study. J. Am. Chem. Soc. 117:9881–9888.

    Article  CAS  Google Scholar 

  • Karonen, M., Loponen, J., Ossipov, V., and Pihlaja, K. 2004. Analysis of procyanidins in pine bark with reversed-phase and normal-phase high-performance liquid chromatography-electrospray ionization mass spectrometry. Anal. Chim. Acta 522:105–112.

    Article  CAS  Google Scholar 

  • Karonen, M., Ossipov, V., Sinkkonen, J., Loponen, J., Haukioja, E., and Pihlaja, K. 2006. Quantitative analysis of polymeric proanthocyanidins in birch leaves with normal-phase HPLC. Phytochem. Anal. 17:149–156.

    Article  PubMed  CAS  Google Scholar 

  • Martin, J. S., Martin, M. M., and Bernays, E. A. 1987. Failure of tannic acid to inhibit digestion or reduce digestibility of plant protein in gut fluids of insect herbivores: implications for theories of plant defense. J. Chem. Ecol. 13:605–621.

    Article  CAS  Google Scholar 

  • McAllister, T. A., Martinez, T., Bae, H. D., Muir, A. D., Yanke, L. J., and Jones, G. A. 2005. Characterization of condensed tannins purified from legume forages: Chromophore production, protein precipitation, and inhibitory effects on cellulose digestion. J. Chem. Ecol. 31:2049–2067.

    Article  PubMed  CAS  Google Scholar 

  • Misra, H. P. and Fridovich, I. 1972. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 247:3170–3175.

    PubMed  CAS  Google Scholar 

  • Mukai, K., Mitani, S., Ohara, K., and Nagaoka, S.-I. 2005. Structure–activity relationship of the tocopherol-regeneration reaction by catechins. Free Radic. Biol. Med. 38:1243–1256.

    Article  PubMed  CAS  Google Scholar 

  • Musso, H. 1967. Phenol coupling, pp. 1–94, in W. I. Taylor and A. R. Battersby (eds.). Oxidative Coupling of Phenols. Marcel Dekker, New York, NY, USA.

    Google Scholar 

  • Northrup, R. R., Dahlgren, R. A., and McColl, J. G. 1998. Polyphenols as regulators of plant–litter–soil interactions in northern California’s pygmy forest: A positive feedback? Biogeochemistry 42:189–220.

    Article  Google Scholar 

  • Okuda, T. 1999a. Novel aspects of tannins—renewed concepts and structure–activity relationships. Curr. Org. Chem. 3:609–622.

    CAS  Google Scholar 

  • Okuda, T. 1999b. Antioxidants in herbs: Polyphenols, pp. 393–410, in L. Packer and M. Hiramatsu (eds.). Antioxidant Food Supplements in Human Health. Academic Press, San Diego, CA, USA.

    Google Scholar 

  • Okuda, T., Yoshida, T., and Hatano, T. 2000. Correlation of oxidative transformations of hydrolyzable tannins and plant evolution. Phytochemistry 55:513–529.

    Article  PubMed  CAS  Google Scholar 

  • Ossipov, V., Haukioja, E., Ossipova, S., Hanhimäki, S., and Pihlaja, K. 2001. Phenolic and phenolic-related factors as determinants of suitability of mountain birch leaves to an herbivorous insect. Biochem. Syst. Ecol. 29:223–240.

    Article  PubMed  CAS  Google Scholar 

  • Ossipova, S., Ossipov, V., Haukioja, E., Loponen, J., and Pihlaja, K. 2001. Proanthocyanidins of mountain birch leaves: quantification and properties. Phytochem. Anal. 12:128–133.

    Article  PubMed  CAS  Google Scholar 

  • Pryor, W. 1986. Oxy-radicals and related species: Their formation, lifetimes, and reactions. Annu. Rev. Physiol. 8:657–667.

    Article  Google Scholar 

  • Quideau, S., Varadinova, T., Karagiozova, D., Jourdes, M., Pardon, P., Baudry, C., Genova, P., Diakov, T., and Petrova, R. 2004. Main structural and stereochemical aspects of the antiherpetic activity of nonahydroxyterphenoyl-containing C-glycosidic ellagitannins. Chem. Biodiv. 1:247–258.

    Article  CAS  Google Scholar 

  • Rice-Evans, C. A., Miller, N. J., and Paganga, G. 1996 Structure–antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20:933–956.

    Article  PubMed  CAS  Google Scholar 

  • Riipi, M., Ossipov, V., Lempa, K., Haukioja, E., Koricheva, J., Ossipova, S., and Pihlaja, K. 2002. Seasonal changes in birch leaf chemistry: Are there trade-offs between leaf growth and accumulation of phenolics? Oecologia 130:380–390.

    Article  Google Scholar 

  • Salminen, J.-P. and Lempa, K. 2002. Effects of hydrolysable tannins on a herbivorous insect: fate of individual tannins in insect digestive tract. Chemoecology 12:203–211.

    Article  CAS  Google Scholar 

  • Salminen, J.-P., Ossipov, V., Haukioja, E., and Pihlaja, K. 2001. Seasonal variation in the content of hydrolyzable tannins in leaves of Betula pubescens. Phytochemistry 57:15–22.

    Article  PubMed  CAS  Google Scholar 

  • Salminen, J.-P., Ossipov, V., Loponen, J., Haukioja, E., and Pihlaja, K. 1999. Characterisation of hydrolyzable tannins from leaves of Betula pubescens by high-performance liquid chromatography–mass spectrometry. J. Chromatogr. A 864:283–291.

    Article  CAS  Google Scholar 

  • Salminen, J.-P., Roslin, T., Karonen, M., Sinkkonen, J., Pihlaja, K., and Pulkkinen, P. 2004. Seasonal variation in the content of hydrolyzable tannins, flavonoid glycosides, and proanthocyanidins in oak leaves. J. Chem. Ecol. 30:1675–1693.

    Article  Google Scholar 

  • Simic, M. G. and Jovanovic, S. V. 1994. Inactivation of oxygen radicals by dietary phenolic compounds in anticarcinogenesis, pp. 20–33, in C.-T. Ho, T. Osawa, M.-T. Huang, and R. T. Rosen (eds.). Food Phytochemicals for Cancer Prevention II. American Chemical Society, Washington DC, USA.

    Google Scholar 

  • Summers, C. B. and Felton, G. W. 1994. Prooxidant effects of phenolic acids on the generalist herbivore Helicoverpa zea (Lepidoptera: Noctuidae): Potential mode of action for phenolic compounds in plant anti-herbivore chemistry. Insect Biochem. Mol. Biol. 24:943–953.

    Article  CAS  Google Scholar 

  • Swain, T. 1979. Tannins and lignins, pp. 657–682, in G. A. Rosenthal and D. H. Janzen (eds.). Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York, NY, USA.

    Google Scholar 

  • Thiboldeaux, R. L., Lindroth, R. L. and Tracy, J. W. 1998. Effects of juglone (5-hydroxy-1,4-naphthoquinone) on midgut morphology and glutathione status in Saturniid moth larvae. Comp. Biochem. Physiol. 120:481–487.

    CAS  Google Scholar 

  • Vuorela, S., Kreander, K., Karonen, M., Nieminen, R., Hämäläinen, M., Galkin, A., Laitinen, L., Salminen, J.-P., Moilanen, E., Pihlaja, K., Vuorela, H., Vuorela, P., and Heinonen, M. 2005. Preclinical evaluation of rapeseed, raspberry, and pine bark phenolics for health related effects. J. Agric. Food Chem. 53:5922–5931.

    Article  PubMed  CAS  Google Scholar 

  • Waite, J. H. 1976. Calculating extinction coefficients for enzymatically produced O-quinones. Anal. Biochem. 75:211–218.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson, L. 2000. SYSTAT: The system for Statistics. SYSTAT, Inc, Evanston, IL.

    Google Scholar 

  • Wright, J. S., Carpenter, D. J., McKay, D. J., and Ingold, K. U. 1997. Theoretical calculation of substituent effects on the O–H bond strength of phenolic antioxidants related to vitamin E. J. Am. Chem. Soc. 119:4245–4252.

    Article  CAS  Google Scholar 

  • Yoshioka, H., Sugiura, K., Kawahara, R., Fujita, T., Makino, M., Kamiya, M., and Tsuyuma, S. 1991. Formation of radicals and chemiluminescence during the autoxidation of tea catechins. Agric. Biol. Chem. 55:2717–2723.

    CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service grant number 2004-35302-14940 to R. Barbehenn and C.P. Constabel. Support for J.-P. Salminen was provided by grant number 204209 from the Academy of Finland. Jonna Kenttä, Riitta Koivikko, Maria Lahtinen, Jaana Liimatainen, Tuuli Luomahaara, Angelica Preetz, and Victor Turhanen assisted with the isolation of tannins. We thank Michael M. Martin for suggesting revisions to this paper, and Jari Sinkkonen for drawing the chemical structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond V. Barbehenn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbehenn, R.V., Jones, C.P., Hagerman, A.E. et al. Ellagitannins have Greater Oxidative Activities than Condensed Tannins and Galloyl Glucoses at High pH: Potential Impact on Caterpillars. J Chem Ecol 32, 2253–2267 (2006). https://doi.org/10.1007/s10886-006-9143-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-006-9143-7

Key words

Navigation