Skip to main content
Log in

Developmental Trajectories in Cottonwood Phytochemistry

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

We examined the hypothesis that ecologically important phytochemical traits differ predictably among various developmental zones of trees (i.e., mature and juvenile zones of individual trees and juvenile ramets that sprout from roots) and that the slope of this phytochemical gradient represents a “developmental trajectory.” We focused on Populus fremontii (Fremont cottonwood), P. angustifolia (narrowleaf cottonwood), and their natural hybrids. Two major patterns emerged. First, within narrowleaf and hybrids, concentrations of important phytochemicals (condensed tannins and phenolic glycosides) differ greatly and predictably between developmental zones. Second, developmental trajectories differ greatly among these cottonwood species and their hybrids: Fremont exhibits a flat trajectory, narrowleaf a steep trajectory, and hybrids an intermediate trajectory, suggesting an additive genetic component and an ontogenetic basis to this phytochemical variation. Because diverse herbivorous species respond to the phytochemistry of their host plants, we predict that the developmental trajectories of plants play a major role in mediating ecological interactions and structuring communities, and that biodiversity in a stand of trees is determined by both interplant genetic diversity and intraplant ontogenetic diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baldwin, I. T. 1999. Inducible nicotine production in native Nicotiana as an example of adaptive phenotypic plasticity. J. Chem. Ecol. 25:3–30.

    Article  CAS  Google Scholar 

  • Barrett, R. D. H. and Agrawal, A. A. 2004. Interactive effects of genotype, environment, and ontogeny on resistance of cucumber (Cucumis sativus) to the generalist herbivore, Spodoptera exigua. J. Chem. Ecol. 30:37–51.

    Article  PubMed  CAS  Google Scholar 

  • Bernays, E. A. and Chapman, R. F. 1994. Host–Plant Selection by Phytophagous Insects. Chapman & Hall, London.

    Google Scholar 

  • Bingaman, B. R. and Hart, E. R. 1993. Clonal and leaf age variation in Populus phenolic glycosides: Implications for host selection by Chrysomela scripta (Coleoptera, Chrysomelidae). Environ. Entomol. 22:397–403.

    CAS  Google Scholar 

  • Brennan, E. B. and Weinbaum, S. A. 2001. Performance of adult psyllids in no-choice experiments on juvenile and adult leaves of Eucalyptus globulus. Entomol. Exp. Appl. 100:179–185.

    Article  Google Scholar 

  • Callahan, H. S., Pigliucci, M., and Schlichting, C. D. 1997. Developmental phenotypic plasticity: where ecology and evolution meet molecular biology. BioEssays 19:519–525.

    Article  PubMed  CAS  Google Scholar 

  • Cornelissen, J. H. C., Cerabolini, B., Castro-Diez, P., Villar-Salvador, P., Montserrat-Marti, G., Puyravaud, J. P., Maestro, M., Werger, M. J. A., and Aerts, R. 2003. Functional traits of woody plants: correspondence of species rankings between field adults and laboratory-grown seedlings? J. Veg. Sci. 14:311–322.

    Article  Google Scholar 

  • Cronk, Q. C. B., Bateman, R. M., and Hawkins, J. A. 2002. Developmental Genetics and Plant Evolution. Taylor and Francis, London.

    Google Scholar 

  • Donaldson, J. R., Stevens, M. T., Barnhill, H. R., and Lindroth, R. L. 2006 Age-related shifts in leaf chemistry of clonal aspen (Populus tremuloides). J. Chem. Ecol 32:1415–1429.

    Article  PubMed  CAS  Google Scholar 

  • Driebe, E. M. and Whitham, T. G. 2000. Cottonwood hybridization affects tannin and nitrogen content of leaf litter and alters decomposition. Oecologia 123:99–107.

    Article  Google Scholar 

  • Eckenwalder, J. E. 1984. Natural intersectional hybridization between North American species of Populus (Salicaceae) in sections Aigeiros and Tacamahaca. 2. Taxonomy. Can. J. Bot. 62:325–335.

    Google Scholar 

  • Edwards, P. B. 1982. Do waxes on juvenile Eucalyptus leaves provide protection from grazing insects? Aust. J. Ecol. 7:347–352.

    Article  Google Scholar 

  • Forkner, R. E., Marquis, R. J., and Lill, J. T. 2004. Feeny revisited: Condensed tannins as anti-herbivore defences in leaf-chewing herbivore communities of Quercus. Ecol. Entomol. 29:174–187.

    Article  Google Scholar 

  • Frankel, G. S. 1959. The raison d’être of plant secondary substances. Science 129:1466–1470.

    Article  Google Scholar 

  • Hagerman, A. E. and Butler, L. G. 1980. Condensed tannin purification and characterization of tannin-associated proteins. J. Agric. Food Chem. 28:947–952.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, J. G., Zangerl, A. R., Delucia, E. H., and Berenbaum, M. R. 2001. The carbon-nutrient balance hypothesis: its rise and fall. Ecol. Let. 4:86–95.

    Article  Google Scholar 

  • Hattenschwiler, S. and Vitousek, P. M. 2000. The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol. Evol. 15:238–243.

    Article  PubMed  Google Scholar 

  • Hattenschwiler, S., Hagerman, A. E., and Vitousek, P. M. 2003. Polyphenols in litter from tropical montane forests across a wide range in soil fertility. Biogeochemistry 64:129–148.

    Article  Google Scholar 

  • Hwang, S. Y. and Lindroth, R. L. 1997. Clonal variation in foliar chemistry of aspen: Effects on gypsy moths and forest tent caterpillars. Oecologia 111:99–108.

    Article  Google Scholar 

  • Jones, C. S. 1999. An essay on juvenility, phase change, and heteroblasty in seed plants. Int. J. Plant Sci. 160:S105–S111.

    Article  PubMed  Google Scholar 

  • Jones, C. G. and Hartley, S. E. 1999. A protein competition model of phenolic allocation. Oikos 86:27–44.

    CAS  Google Scholar 

  • Jordan, G. J., Potts, B. M., and Wiltshire, R. J. E. 1999. Strong, independent, quantitative genetic control of the timing of vegetative phase change and first flowering in Eucalyptus globulus ssp. globulus (Tasmanian Blue Gum). Heredity 83:179–187.

    Article  PubMed  Google Scholar 

  • Jordan, G. J., Potts, B. M., Chalmers, P., and Wiltshire, R. J. E. 2000. Quantitative genetic evidence that the timing of vegetative phase change in Eucalyptus globulus ssp. globulus is an adaptive trait. Aust. J. Bot. 48:561–567.

    Article  Google Scholar 

  • Karban, R. and Baldwin, I. T. 1997. Induced Responses to Herbivory. University of Chicago Press, Chicago, IL, USA.

    Google Scholar 

  • Karban, R. and Thaler, J. S. 1999. Plant phase change and resistance to herbivory. Ecology 80:510–517.

    Article  Google Scholar 

  • Kearsley, M. J. C. and Whitham, T. G. 1989. Developmental changes in resistance to herbivory: Implications for individuals and populations. Ecology 79:422–434.

    Article  Google Scholar 

  • Kearsley, M. J. C. and Whitham, T. G. 1998. The developmental stream of cottonwoods affects ramet growth and resistance to galling aphids. Ecology 79:178–191.

    Article  Google Scholar 

  • Keim, P., Paige, K. N., Whitham, T. G., and Lark, K. G. 1989. Genetic analysis of an interspecific hybrid swarm of Populus: Occurrence of unidirectional introgression. Genetics 123:557–565.

    PubMed  CAS  Google Scholar 

  • Kinney, K. K., Lindroth, R. L., Jung, S. M., and Nordheim, E. V. 1997. Effects of CO2 and NO3 availability on deciduous trees: phytochemistry and insect performance. Ecology 78:215–230.

    Article  Google Scholar 

  • Kleiner, K. W., Ellis, D. D., McCown, B. H., and Raffa, K. F. 2003. Leaf ontogeny influences leaf phenolics and the efficacy of genetically expressed Bacillus thuringiensis Cry1a(a) d-endotoxin in hybrid poplar against gypsy moth. J. Chem. Ecol. 29:2585–2602.

    Article  PubMed  CAS  Google Scholar 

  • Kraus, T. E. C., Dahlgren, R. A., and Zasoski, R. J. 2003. Tannins in nutrient dynamics of forest ecosystems: A review. Plant Soil 256:41–66.

    Article  CAS  Google Scholar 

  • Larsson, S., Ekbom, B., and Bjorkman, C. 2000. Influence of plant quality on pine sawfly population dynamics. Oikos 89:440–450.

    Article  Google Scholar 

  • Lawrence, R., Potts, B. M., and Whitham, T. G. 2003. Relative importance of plant ontogeny, host genetic variation, and leaf age for a common herbivore. Ecology 84:1171–1178.

    Google Scholar 

  • Lawson, E. J. R. and Poethig, R. S. 1995. Shoot development in plants: Time for a change. Trends Gen. 11:263–268.

    Article  CAS  Google Scholar 

  • Lindroth, R. L. and Hwang, S. Y. 1996. Diversity, redundancy, and multiplicity in chemical defense of aspen. Recent Adv. Phytochem. 30:25–56.

    CAS  Google Scholar 

  • Lindroth, R. L., Hsia, M. T. S., and Scriber, J. M. 1987. Seasonal patterns in the phytochemistry of 3 Populus species. Biochem. Syst. Ecol. 15:681–686.

    Article  CAS  Google Scholar 

  • Lindroth, R. L., Scriber, J. M., and Hsia, M. T. S. 1986. Differential responses of tiger swallowtail subspecies to secondary metabolites from tulip tree and quaking aspen. Oecologia 70:13–19.

    Article  Google Scholar 

  • Lindroth, R. L., Kinney, K. K., and Platz, C. L. 1993. Responses of deciduous trees to elevated atmospheric CO2: Productivity, phytochemistry, and insect performance. Ecology 74:763–777.

    Article  CAS  Google Scholar 

  • Lindroth, R. L., Klein, K. A., Hemming, J. D. C., and Feuker, A. M. 1997. Variation in temperature and dietary nitrogen affect performance of the gypsy moth (Lymantria dispar L). Physiol. Entomol. 22:55–64.

    Google Scholar 

  • Lindroth, R. L., Osier, T. L., Barnhill, H. R. H., and Wood, S. A. 2002. Effects of genotype and nutrient availability on phytochemistry of trembling aspen (Populus tremuloides Michx.) during leaf senescence. Biochem. Syst. Ecol. 30:297–307.

    Article  CAS  Google Scholar 

  • Martinsen, G. D., Driebe, E. M., and Whitham, T. G. 1998. Indirect interactions mediated by changing plant chemistry: Beaver browsing benefits beetles. Ecology 79:192–200.

    Article  Google Scholar 

  • Martinsen, G. D., Whitham, T. G., Turek, R. J., and Keim, P. 2001. Hybrid populations selectively filter gene introgression between species. Evolution 55:1325–1335.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, W. J. 1980. Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 11:119–161.

    Article  Google Scholar 

  • Montgomery, D. C. 1997. Design and Analysis of Experiments. John Wiley & Sons, New York.

    Google Scholar 

  • Neter, J., Kutner, M. H., Nachtsheim, C. J., and Wasserman, W. 1996. Applied Linear Statistical Models. Irwin, Chicago, IL, USA.

    Google Scholar 

  • Northup, R. R., Dahlgren, R. A., and McColl, J. G. 1998. Polyphenols as regulators of plant–litter–soil interactions in Northern California’s pygmy forest: A positive feedback? Biogeochemistry 42:189–220.

    Article  CAS  Google Scholar 

  • Ohnmeiss, T. E. and Baldwin, I. T. 2000. Optimal defense theory predicts the ontogeny of an induced nicotine defense. Ecology 81:1765–1783.

    Article  Google Scholar 

  • Orians, C. M., Fritz, R. S., and Clausen, T. P. 1993. The genetic basis for variation in the concentration of phenolic glycosides in Salix sericea: Clonal variation and sex-based differences. Biochem. Syst. Ecol. 21:535–542.

    Article  Google Scholar 

  • Orians, C. M., Lower, S., Fritz, R. S., and Roche, B. M. 2003. The effects of plant genetic variation and soil nutrients on secondary chemistry and growth in a shrubby willow, Salix sericea: Patterns and constraints on the evolution of resistance traits. Biochem. Syst. Ecol. 31:233–247.

    Article  CAS  Google Scholar 

  • Osier, T. L. and Lindroth, R. L. 2001. Effects of genotype, nutrient availability, and defoliation on aspen phytochemistry and insect performance. J. Chem. Ecol. 27:1289–1313.

    Article  PubMed  CAS  Google Scholar 

  • Palo, R. T. 1984. Distribution of birch (Betula spp.), willow (Salix spp.), and poplar (Populus spp.) secondary metabolites and their potential role as chemical defense against herbivores. J. Chem. Ecol. 10:499–520.

    Article  CAS  Google Scholar 

  • Poethig, R. S. 1990. Phase change and the regulation of shoot morphogenesis in plants. Science 250:923–930.

    Article  PubMed  Google Scholar 

  • Porter, L. J., Hrstich, L. N., and Chan, B. G. 1986. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 25:223–230.

    Article  CAS  Google Scholar 

  • Rehill, B. R., Clauss, A., Wieczorek, L., Whitham, T., and Lindroth, R. 2005. Foliar phenolic glycosides from Populus fremontii, Populus angustifolia, and their hybrids. Biochem. Syst. Ecol. 33:125–131.

    Article  CAS  Google Scholar 

  • Reichardt, P. B., Bryant, J. P., Mattes, B. R., Clausen, T. P., Chapin, F. S., and Meyer, M. 1990. Winter chemical defense of Alaskan balsam poplar against snowshoe hares. J. Chem. Ecol. 16:1941–1959.

    Article  CAS  Google Scholar 

  • Schultz, J. C. 1988. Plant responses induced by herbivores. Trends Ecol. Evol. 3:45–49.

    Article  Google Scholar 

  • Schweitzer, J. A., Martinsen, G. D., and Whitham, T. G. 2002. Cottonwood hybrids gain fitness traits of both parents: A mechanism for their long-term persistence? Am. J. Bot. 89:981–990.

    Google Scholar 

  • Schweitzer, J. A., Bailey, J. K., Rehill, B. J., Martinsen, G. D., Hart, S. C., Lindroth, R. L., Keim, P., and Whitham, T. G. 2004. Genetically based trait in a dominant tree affects ecosystem processes. Ecol. Let. 7:127–134.

    Article  Google Scholar 

  • Seldal, T., Andersen, K. J., and Hogstedt, G. 1994. Grazing-induced proteinase inhibitors: a possible cause for lemming population cycles. Oikos 70:3–11.

    Google Scholar 

  • Shelton, A. L. 2000. Variable chemical defences in plants and their effects on herbivore behaviour. Evol. Ecol. Res. 2:231–249.

    Google Scholar 

  • Sokal, R. R. and Rohlf, F. J. 1995. Biometry. W.H. Freeman and Co., New York.

    Google Scholar 

  • Srivastava, L. M. 2002. Plant Development: Hormones and Environment. Academic Press, Boston, MA, USA.

    Google Scholar 

  • Still, W. C., Kahn, M., and Mitra, A. 1978. Rapid chromatographic technique for preparative separations with moderate resolution. J. Org. Chem. 43:2923–2925.

    Article  CAS  Google Scholar 

  • Stockhoff, B. A. 1993. Diet heterogeneity: Implications for growth of a generalist herbivore, the gypsy moth. Ecology 74:1939–1949.

    Article  Google Scholar 

  • Suomela, J. and Ayres, M. P. 1994. Within-tree and among-tree variation in leaf characteristics of mountain birch and its implications for herbivory. Oikos 70:212–222.

    Google Scholar 

  • Swihart, R. K. and Bryant, J. P. 2001. Importance of biogeography and ontogeny of woody plants in winter herbivory by mammals. J. Mammal. 82:1–21.

    Article  Google Scholar 

  • Tahvanainen, J., Helle, E., Julkunen-Tiitto, R., and Lavola, A. 1985. Phenolic compounds of willow bark as deterrents against feeding by mountain hare. Oecologia 65:319–323.

    Article  Google Scholar 

  • Valavanis, S. 1959. Econometrics: An Introduction to Maximum Likelihood Methods. McGraw-Hill, New York.

    Google Scholar 

  • Van Breemen, N. and Finzi, A. C. 1998. Plant–soil interactions: Ecological aspects and evolutionary implications. Biogeochemistry 42:1–19.

    Article  Google Scholar 

  • Waltz, A. M. and Whitham, T. G. 1997. Plant development affects arthropod communities: opposing impacts of species removal. Ecology 78:2133–2144.

    Article  Google Scholar 

  • Waterman, P. G. and Mole, S. 1994. Analysis of Phenolic Plant Metabolites. Blackwell Scientific, Boston, MA, USA.

    Google Scholar 

  • White, T. C. R. 1984. The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia 63:90–105.

    Article  Google Scholar 

  • Wiltshire, R. J. E., Murfet, I. C., and Reid, J. B. 1994. The genetic control of heterochrony: Evidence from developmental mutants of Pisum sativum L. J. Evol. Biol. 7:447–465.

    Article  Google Scholar 

  • Wiltshire, R. J. E., Potts, B. M., and Reid, J. B. 1998. Genetic control of reproductive and vegetative phase change in the Eucalyptus risdoniiE. tenuiramis complex. Aust. J. Bot. 46:45–63.

    Article  Google Scholar 

  • Wimp, G. M., Young, W. P., Woolbright, S. A., Martinsen, G. D., Keim, P., and Whitham, T. G. 2004. Conserving plant genetic diversity for dependent animal communities. Ecol. Let. 7:776–780.

    Article  Google Scholar 

  • Wimp, G. M., Martinsen, G. D., Floate, K. D., Bangert, R. K., and Whitham, T. G. 2005. Plant genetic determinants of arthropod community structure and diversity. Evolution 59:61–69.

    Article  PubMed  Google Scholar 

  • Zagory, D. and Libby, W. J. 1985. Maturation-related rust resistance of Pinus radiata to western gall rust. Phytopathology 75:1443–1447.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Jack Donaldson and Michael Stevens for stimulating discussions and the Ogden Nature Center, Ogden, UT, for accommodating our common gardens and providing an opportunity to educate the public on the conservation value of cottonwoods and riparian habitat. Shane Anderson, Matthias Dahnert, Kate Larson, Amanda Thompson, and Gina Wimp assisted with leaf collection, and Lindsay Wieczorek, Heidi Barnhill, and Kelly Crowner helped with chemical analyses. The comments of two anonymous reviewers greatly improved the manuscript. This research was supported by NSF grants DEB-0078280 and DEB-0425908.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Rehill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehill, B.J., Whitham, T.G., Martinsen, G.D. et al. Developmental Trajectories in Cottonwood Phytochemistry. J Chem Ecol 32, 2269–2285 (2006). https://doi.org/10.1007/s10886-006-9141-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-006-9141-9

Keywords

Navigation