Skip to main content
Log in

Periodic Waves in the Fractional Modified Korteweg–de Vries Equation

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

A Correction to this article was published on 02 June 2021

This article has been updated

Abstract

Periodic waves in the modified Korteweg–de Vries (mKdV) equation are revisited in the setting of the fractional Laplacian. Two families of solutions in the local case are given by the sign-definite dnoidal and sign-indefinite cnoidal solutions. Both solutions can be characterized in the general fractional case as global minimizers of the quadratic part of the energy functional subject to the fixed \(L^4\) norm: the sign-definite (sign-indefinite) solutions are obtained in the subspace of even (odd) functions. Morse index is computed for both solutions and the spectral stability criterion is derived. We show numerically that the family of sign-definite solutions has a generic fold bifurcation for the fractional Laplacian of lower regularity and the family of sign-indefinite solutions has a generic symmetry-breaking bifurcation both in the fractional and local cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: The inverse scattering transform—Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974)

    Article  MathSciNet  Google Scholar 

  2. Albert, J.P.: Positivity properties and stability of solitary-wave solutions of model equations for long waves. Commun. PDE 17, 1–22 (1992)

    Article  MathSciNet  Google Scholar 

  3. Ambrosio, V.: On some convergence results for fractional periodic Sobolev spaces. Opuscula Math. 40, 5–20 (2020)

    Article  MathSciNet  Google Scholar 

  4. Andrade, T.P., Pastor, A.: Orbital stability of one-parameter periodic traveling waves for dispersive equations and applications. J. Math. Anal. Appl. 475, 1242–1275 (2019)

    Article  MathSciNet  Google Scholar 

  5. Angulo, J.: Non-linear stability of periodic travelling-wave solutions for the Schrödinger and modified Korteweg–de Vries equation. J. Differ. Equ. 235, 1–30 (2007)

    Article  Google Scholar 

  6. Angulo, J.: Stability properties of solitary waves for fractional KdV and BBM equations. Nonlinearity 31, 920–956 (2018)

    Article  MathSciNet  Google Scholar 

  7. Angulo, J., Natali, F.: On the instability of periodic waves for dispersive equations. Differ. Int. Equ. 29, 837–874 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Bona, J.L., Kalisch, H.: Singularity formation in the generalized Benjamin–Ono equation. Discreate Contin. Dyn. Syst. 11, 27–45 (2004)

    Article  MathSciNet  Google Scholar 

  9. Bona, J.L., Souganidis, P.E., Strauss, W.A.: Stability and instability of solitary waves of Korteweg–de Vries type. Proc. R. Soc. Lond. Ser. A 411, 395–412 (1987)

    Article  MathSciNet  Google Scholar 

  10. Bronski, J.C., Hur, V.M.: Modulational instability and variational structure. Stud. Appl. Math. 132, 285–331 (2014)

    Article  MathSciNet  Google Scholar 

  11. Chen, H.: Existence of periodic traveling-wave solutions of nonlinear, dispersive wave equations. Nonlinearity 17, 2041–2056 (2004)

    Article  MathSciNet  Google Scholar 

  12. Chen, H., Bona, J.: Periodic travelling wave solutions of nonlinear dispersive evolution equations. Discreate Contin. Dyn. Syst. 33, 4841–4873 (2013)

    Article  Google Scholar 

  13. Chen, J., Pelinovsky, D.E.: Periodic travelling waves of the modified KdV equation and rogue waves on the periodic background. J. Nonlinear Sci. 29, 2797–2843 (2019)

    Article  MathSciNet  Google Scholar 

  14. Chow, S.N., Sanders, J.A.: On the number of critical points of the period. J. Differ. Equ. 64, 51–66 (1986)

    Article  MathSciNet  Google Scholar 

  15. Claasen, K., Johnson, M.: Nondegeneracy and stability of antiperiodic bound states for fractional nonlinear Schrödinger equations. J. Differ. Equ. 266, 5664–5712 (2019)

    Article  Google Scholar 

  16. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Sharp global well-posedness results for periodic and non-periodic KdV and modified KdV on \({\mathbb{R}}\) and \({\mathbb{T}}\). J. Am. Math. Soc. 16, 705–749 (2003)

    Article  Google Scholar 

  17. Deconinck, B., Kapitula, T.: On the spectral and orbital stability of spatially periodic stationary solutions of generalized Korteweg–de Vries equations. Hamiltonian Partial Differ. Equ. Appl. 75, 285–322 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Frank, R.L., Lenzmann, E.: Uniqueness of non-linear ground states for fractional Laplacian in \({\mathbb{R}}\). Acta Math. 210, 261–318 (2013)

    Article  MathSciNet  Google Scholar 

  19. Gavrilov, L.: Remark on the number of critical points on the period. J. Differ. Equ. 101, 58–65 (1993)

    Article  MathSciNet  Google Scholar 

  20. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry I. J. Funct. Anal. 74, 160–197 (1987)

    Article  MathSciNet  Google Scholar 

  21. Hakkaev, S., Stefanov, A.G.: Stability of periodic waves for the fractional KdV and NLS equations. Proc. R. Soc. Edinb. (2021), https://doi.org/10.1017/prm.2020.54

  22. Hǎrǎguş, M., Kapitula, T.: On the spectra of periodic waves for infinite-dimensional Hamiltonian systems. Physica D 237, 2649–2671 (2008)

    Article  MathSciNet  Google Scholar 

  23. Henry, D., Perez, J.F., Wreszinski, W.: Stability theory for solitary-wave solutions of scalar field equation. Commun. Math. Phys. 85, 351–361 (1982)

    Article  MathSciNet  Google Scholar 

  24. Hur, V.M., Johnson, M.: Stability of periodic traveling waves for nonlinear dispersive equations. SIAM J. Math. Anal. 47, 3528–3554 (2015)

    Article  MathSciNet  Google Scholar 

  25. Johnson, M.A.: Stability of small periodic waves in fractional KdV-type equations. SIAM J. Math. Anal. 45, 3168–3293 (2013)

    Article  MathSciNet  Google Scholar 

  26. Kenig, C.E., Martel, Y., Robbiano, L.: Local well-posedness and blow-up in the energy space for a class of \(L^2\) critical dispersion generalized Benjamin–Ono equations. Ann. Inst. H. Poincaré Anal. Nonlinear 28, 853–887 (2011)

    Article  Google Scholar 

  27. Kenig, C.E., Takaoka, H.: Global well posedness of the modified Benjamin–Ono equation with initial data in \(H^{1/2}\). IMRN 2006, O95702 (2006)

    Google Scholar 

  28. Klein, C., Linares, F., Pilod, D., Saut, J.C.: On Whitam and related equations. Stud. Appl. Math. 140, 133–177 (2018)

    Article  MathSciNet  Google Scholar 

  29. Le, U., Pelinovsky, D.E.: Convergence of Petviashvili’s method near periodic waves in the fractional Korteweg–de Vries equation. SIAM J. Math. Anal. 51, 2850–2883 (2019)

    Article  MathSciNet  Google Scholar 

  30. Lin, Z.: Instability of nonlinear dispersive solitary waves. J. Funct. Anal. 255, 1091–1124 (2008)

    Article  MathSciNet  Google Scholar 

  31. Martel, Y., Pilod, D.: Construction of a minimal mass blow up solution of the modified Benjamin–Ono equation. Math. Ann. 369, 153–245 (2017)

    Article  MathSciNet  Google Scholar 

  32. Natali, F., Pelinovsky, D., Le, U.: New variational characterization of periodic waves in the fractional Korteweg–de Vries equation. Nonlinearity 33, 1956–1986 (2020)

    Article  MathSciNet  Google Scholar 

  33. Pelinovsky, D.E.: Localization in Periodic Potentials: From Schrödinger Operators to the Gross–Pitaevskii Equation, LMS Lecture Note Series, vol. 390. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  34. Pelinovsky, D.E.: Spectral stability of nonlinear waves in KdV-type evolution equations. In: Kirillov, O.N., Pelinovsky, D.E. (eds.) Nonlinear Physical Systems: Spectral Analysis, Stability, and Bifurcations, pp. 377–400. Wiley, New York (2014)

    Chapter  Google Scholar 

  35. Weinstein, M.I.: Lyapunov stability of ground states of nonlinear dispersive evolution equations. Commun. Pure Appl. Math. 39, 51–68 (1986)

    Article  MathSciNet  Google Scholar 

  36. Weinstein, M.I.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16, 472–491 (1985)

    Article  MathSciNet  Google Scholar 

  37. Weinstein, M.I.: Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation. Commun. Part. Differ. Equ. 12, 1133–1173 (1987)

    Article  MathSciNet  Google Scholar 

  38. Weinstein, M.I.: Solitary waves of nonlinear dispersive evolution equations with critical power nonlinearities. J. Differ. Equ. 69, 192–203 (1987)

    Article  MathSciNet  Google Scholar 

  39. Yagasaki, K.: Monotonicity of the period function for \(u^{\prime \prime } - u + u^p = 0\) with \(p \in {\mathbb{R}}\) and \(p > 1\). J. Differ. Equ. 255, 1988–2001 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thanks A. Duran and A. Stefanov for careful reading of their preprint and many useful remarks. F. Natali is supported by Fundação Araucária (Grant 002/2017), CNPq (Grant 304240/2018-4) and CAPES MathAmSud (Grant 88881.520205/2020-01). U. Le is supported by the graduate scholarship from McMaster University. D.Pelinovsky acknowledges financial support from the state task program in the sphere of scientific activity of the Ministry of Science and Higher Education of the Russian Federation (Task No. FSWE-2020-0007) and from the grant of the president of the Russian Federation for the leading scientific schools (Grant No. NSH-2485.2020.5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry E. Pelinovsky.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: the typos in derivatives of k presented below Eq. 3.12 has been corrected.

Appendices

Appendix A. Stokes Expansion of General Small-Amplitude Waves

Here we generalize the Stokes expansion of Sect. 5.1 in order to prove that \(\sigma _0 > 0\) for \(\alpha > \alpha _0\) and \(\sigma _0 < 0\) for \(\alpha < \alpha _0\), where \(\sigma _0 = \langle {\mathcal {L}}^{-1} 1, 1 \rangle \) is computed on the small-amplitude wave (5.1) and (5.3) in terms of the small amplitude A.

Let \(\psi \) satisfy Eq. (1.1) for (cb) defined in an open neighborhood \({\mathcal {I}} \subset {\mathbb {R}}^2\) of the point \(\left( \frac{1}{2},0\right) \). We generalize the decomposition (5.1) by setting

$$\begin{aligned} \psi (x) = \psi _0 + \varphi (x), \end{aligned}$$
(6.4)

where \(\psi _0 = \psi (c,b)\) is a root of the cubic equation \(b + c \psi _0 = 2 \psi _0^3\) and \(\varphi \) is not required to satisfy the zero-mean property. Since three roots exist for \(\psi _0\) at \(b = 0\), we are picking uniquely the positive root by using the expansion

$$\begin{aligned} \psi _0(c,b) = \frac{1}{2} \sqrt{2c} + \frac{b}{2c} + {\mathcal {O}}(b^2). \end{aligned}$$
(6.5)

Eq. (1.1) is written in the equivalent form:

$$\begin{aligned} D^{\alpha } \varphi + (c - 6 \psi _0^2) \varphi = 2 \varphi ^3 + 6 \psi _0 \varphi ^2, \end{aligned}$$
(6.6)

which generalizes (5.2). By using the Stokes expansion in terms of small amplitude A:

$$\begin{aligned} \left\{ \begin{array}{l} \varphi (x) = A \varphi _1(x) + A^2 \varphi _2(x) + A^3 \varphi _3(x) + {\mathcal {O}}(A^4), \\ c - 6 \psi _0^2 = -1 + A^2 \omega _2 + {\mathcal {O}}(A^4), \end{array} \right. \end{aligned}$$
(6.7)

we obtain recursively: \(\varphi _1(x) = \cos (x)\),

$$\begin{aligned}&\varphi _2(x) = -3 \psi _0 + \frac{3 \psi _0}{2^{\alpha }-1} \cos (2x),\\&\varphi _3(x) = \frac{1}{3^{\alpha } - 1} \left[ \frac{1}{2} + \frac{18 \psi _0^2}{2^{\alpha }-1} \right] \cos (3x), \end{aligned}$$

and

$$\begin{aligned} \omega _2 = \frac{3}{2} - 36 \psi _0^2 + \frac{18 \psi _0^2}{2^{\alpha }-1}. \end{aligned}$$

By substituting \(\omega _2\) to the expansion for c in (6.7) and using expansion (6.5), we obtain

$$\begin{aligned} \gamma _2 A^2 = 2c - 1 + 6 b + {\mathcal {O}}((2c-1)^2 + b^2), \end{aligned}$$
(6.8)

where \(\gamma _2 = -\omega _2 |_{\psi _0 = \frac{1}{2}}\) is the same as in (5.3). By using (6.8), we obtain perturbatively:

$$\begin{aligned} a= & {} \frac{1}{2\pi } \int _{-\pi }^{\pi } \psi (x) dx = \psi _0 \left[ 1 - 3 A^2 + {\mathcal {O}}(A^4) \right] \\= & {} \frac{1}{2} - a_1(2c-1) - a_2 b + {\mathcal {O}}((2c-1)^2 + b^2),\\ \omega= & {} c - 6 a^2 \\= & {} -1 + \frac{1}{2} (1 + 12 a_1) (2c-1) + 6 a_2 b + {\mathcal {O}}((2c-1)^2 + b^2), \end{aligned}$$

and

$$\begin{aligned} \beta= & {} b + c a - 2 a^3 \\= & {} \frac{1}{4} (1 + 4 a_1)(2c-1) + (1+ a_2) b + {\mathcal {O}}((2c-1)^2 + b^2), \end{aligned}$$

where

$$\begin{aligned} a_1 := \frac{3}{8 \gamma _2} \frac{4 - 2^{\alpha }}{2^{\alpha } - 1}, \quad a_2 := \frac{3}{2 \gamma _2} \frac{2 + 2^{\alpha }}{2^{\alpha } - 1}. \end{aligned}$$

If \(\gamma _2 \ne 0\) for \(\alpha \ne \alpha _0\) given by (5.4), the transformation \({\mathcal {I}} \ni (c,b) \mapsto (\omega ,a) \in {\mathcal {O}}\) is \(C^1\) and invertible with the inverse transformation

$$\begin{aligned} c= & {} \frac{1}{2} + (\omega + 1) + 6 (a -\frac{1}{2}) + {\mathcal {O}}((\omega + 1)^2 + (2a-1)^2),\\ b= & {} -\frac{1}{a_2} \left[ 2 a_1 (\omega + 1) + \frac{1}{2} (1 + 12 a_1) (2a - 1) + {\mathcal {O}}((\omega + 1)^2 + (2a-1)^2) \right] , \end{aligned}$$

from which we obtain \(\beta = \beta (\omega ,a)\):

$$\begin{aligned} \beta = \frac{a_2 - 4 a_1}{2a_2} (\omega + 1) + \frac{2 a_2 - 1 - 12 a_1}{2a_2} (2a - 1) + {\mathcal {O}}((\omega + 1)^2 + (2a-1)^2) \end{aligned}$$

and

$$\begin{aligned} s_0 = \omega - \partial _a \beta + 12 a \partial _{\omega } \beta = \frac{1}{a_2} + {\mathcal {O}}((\omega + 1)^2 + (2a-1)^2). \end{aligned}$$

Since \(\sigma _0 = \frac{2\pi }{s_0}\), we have \(\mathrm{sign}(\sigma _0) = \mathrm{sign}(a_2) = \mathrm{sign}(\gamma _2)\), from which it follows that \(\sigma _0 > 0\) for \(\alpha > \alpha _0\) and \(\sigma _0 < 0\) for \(\alpha < \alpha _0\).

Furthermore, it follows from (6.8) that

$$\begin{aligned} \gamma _2 A^2 = \frac{2 (a_2 - 6 a_1)}{a_2} (\omega + 1) + \frac{3(2a_2 - 1 - 12 a_1)}{a_2} (2 a - 1) + {\mathcal {O}}((\omega +1)^2 + (2a-1)^2). \end{aligned}$$

Explicit computation shows that \(2a_2 - 1 - 12 a_1 = 0\), hence \(\Vert \phi \Vert ^2_{L^2} = \pi A^2 + {\mathcal {O}}(A^4)\) as a function of \((\omega ,a)\) satisfies

$$\begin{aligned} \frac{\partial }{\partial \omega } \Vert \phi \Vert _{L^2}^2 = \frac{2\pi (a_2 - 6 a_1)}{\gamma _2 a_2} + {\mathcal {O}}(A^2) = \frac{2\pi }{3} \frac{2^{\alpha } - 1}{2^{\alpha } + 2} + {\mathcal {O}}(A^2) = \frac{d}{d \omega } \Vert \phi \Vert _{L^2}^2 + {\mathcal {O}}(A^2), \end{aligned}$$

in agreement with (5.5). In other words, although a is defined by \(\omega \) at the periodic waves satisfying \(b = 0\) by

$$\begin{aligned} 2a - 1 = -\frac{4 a_1}{1 + 12 a_1} (\omega + 1) + {\mathcal {O}}((\omega + 1)^2), \end{aligned}$$

this dependence does not result in the discrepancy between partial and ordinary derivatives of \(\Vert \phi \Vert _{L^2}^2\) in \(\omega \) along the family of even periodic waves in the limit \(A \rightarrow 0\).

Appendix B. On the Variational Problem (6.3) with Two Constraints

We show that the periodic solutions to Eq. (1.1) with two parameters (cb) can be recovered from the ground state of the variational problem (6.3).

Proposition 6.5

Fix \(\alpha > \frac{1}{2}\) and \(m_0 := (2\pi )^{-\frac{1}{4}}\). For every \(m \in [-m_0,m_0]\) and every \(c \in (-\,1,\infty )\), there exists the ground state (minimizer) \(\chi \in H^{\frac{\alpha }{2}}_{\mathrm{per}}\) of the variational problem (6.3). If \(m \in (-\,m_0,m_0)\), the ground state has the single-lobe profile and there exists \(C > 0\) such that \(\psi (x) = C \chi (x)\) satisfies Eq. (1.1) with some b.

Proof

The bound \(|m| \le m_0\) follows by the Hölder’s inequality

$$\begin{aligned} \left| \int _{{\mathbb {T}}} u dx \right| \le \left( \int _{{\mathbb {T}}} 1^{\frac{4}{3}} dx \right) ^{\frac{3}{4}} \left( \int _{{\mathbb {T}}} u^4 dx \right) ^{\frac{1}{4}} = (2\pi )^{\frac{3}{4}}. \end{aligned}$$

The quadratic functional \(B_c(u)\) in (2.3) is bounded from below by the Poincaré inequality:

$$\begin{aligned} B_c(u) \ge \frac{1}{2} \Vert u - m \Vert ^2_{L^2} + \frac{1}{2} c \Vert u \Vert ^2_{L^2} = \frac{1}{2} (1 + c) \Vert u \Vert ^2_{L^2} - \pi m^2. \end{aligned}$$

By the same analysis as in the proof of Theorem 2.1, for every \(m \in [-m_0,m_0]\) and every \(c \in (-\,1,\infty )\), there exists the ground state \(\chi \in H^{\frac{\alpha }{2}}_{\mathrm{per}}\) of the variational problem (6.3). Moreover, by the symmetric rearrangements, the ground state is either constant or has the single-lobe profile. The constant solution corresponds to \(|m| = m_0\), hence the ground state has the single-lobe profile if \(m \in (-\,m_0,m_0)\).

With two Lagrange multipliers \(\mu \) and \(\nu \), the ground state \(\chi \in H^{\frac{\alpha }{2}}_{\mathrm{per}}\) satisfies the stationary equation

$$\begin{aligned} D^{\alpha } \chi + c \chi + \nu = \mu \chi ^3. \end{aligned}$$
(6.9)

Lagrange multipliers satisfy two relations due to the constraints in (6.3):

$$\begin{aligned} \mu = 2 B_c(\chi ) + 2 \pi m \nu , \quad \mu \int _{{\mathbb {T}}} \chi ^3 dx = 2 \pi (c m + \nu ). \end{aligned}$$
(6.10)

Eliminating \(\nu \) yields

$$\begin{aligned} \left[ 1 - m \int _{{\mathbb {T}}} \chi ^3 dx \right] \mu = 2 \left[ B_c(\chi ) - \pi c m^2 \right] . \end{aligned}$$
(6.11)

The left-hand side of (6.11) can be rewritten in the equivalent symmetrized form:

$$\begin{aligned} 1 - m \int _{{\mathbb {T}}} \chi ^3 dx= & {} \frac{1}{2\pi } \left[ \left( \int _{{\mathbb {T}}} dx \right) \left( \int _{{\mathbb {T}}} \chi ^4 dx \right) - \left( \int _{{\mathbb {T}}} \chi dx \right) \left( \int _{{\mathbb {T}}} \chi ^3 dx \right) \right] \\= & {} \frac{1}{16 \pi } \int _{{\mathbb {T}}} \int _{{\mathbb {T}}} \left( \left[ \chi (x) - \chi (y) \right] ^4 + 3 \left[ \chi ^2(x) - \chi ^2(y) \right] ^2 \right) dx dy, \end{aligned}$$

from which it follows that it is strictly positive if \(\chi (x)\) is not constant. Similarly, the right-hand side of (6.11) is strictly positive if \(\chi (x)\) is not constant due to the following inequality

$$\begin{aligned} 2 B_c(\chi ) - 2 \pi c m^2 = \Vert D^{\frac{\alpha }{2}} \chi \Vert ^2_{L^2} + c \Vert u - m \Vert ^2_{L^2} \ge (1 + c) \Vert u - m \Vert ^2_{L^2} > 0. \end{aligned}$$

Since the ground state is non-constant if \(m \in (-\,m_0,m_0)\), we obtain the unique \(\mu > 0\) from (6.11) such that the transformation \(\psi = C \chi \) with \(C := \sqrt{\mu }/\sqrt{2}\) reduces (6.9) to Eq. (1.1) with \(b = \nu \sqrt{\mu }/\sqrt{2}\), where \(\nu \) is uniquely found from (6.10). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natali, F., Le, U. & Pelinovsky, D.E. Periodic Waves in the Fractional Modified Korteweg–de Vries Equation. J Dyn Diff Equat 34, 1601–1640 (2022). https://doi.org/10.1007/s10884-021-10000-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-021-10000-w

Keywords

Mathematics Subject Classification

Navigation