Skip to main content

Exact Traveling Wave Solutions and Bifurcation Analysis for Time Fractional Dual Power Zakharov-Kuznetsov-Burgers Equation

  • Conference paper
  • First Online:
Mathematical Modelling and Scientific Computing with Applications (ICMMSC 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 308))

  • 687 Accesses

Abstract

In this paper, we introduce the time fractional dual power Zakharov-Kuznetsov-Burgers equation in the sense of modified Riemann-Liouville derivative. We briefly describe one direct ansatz method namely \((G'/G)\)-expansion method in adherence of fractional complex transformation and applying this method exploit miscellaneous exact traveling wave solutions including solitary wave, kink-type wave, breaking wave and periodic wave solutions of the equation. Next we investigate the dynamical behavior, bifurcations and phase portrait analysis of the exact traveling wave solutions of the system in presence and absence of damping effect. Moreover, we demonstrate the exceptional features of the traveling wave solutions and phase portraits of planar dynamical system via interesting figures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oldham, K., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  2. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  3. Kilbas, A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  4. Baillie, R.T.: Long memory processes and fractional integration in econometrics. J. Econometrics 73, 5–59 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, 161–208 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Saadatmandi, A., Dehghan, M.: A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59, 1326–1336 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhou, Y., Jiao, F., Li, J.: Existence and uniqueness for p-type fractional neutral differential equations. Nonlinear Anal. 71, 2724–2733 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Galeone, L., Garrappa, R.: Explicit methods for fractional differential equations and their stability properties. J. Comput. Appl. Math. 228, 548–560 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Trigeassou, J.C., Maamri, N., Sabatier, J., Oustaloup, A.: A Lyapunov approach to the stability of fractional differential equations. Signal Process. 91, 437–445 (2011)

    Article  MATH  Google Scholar 

  10. Jumarie, G.: Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 51, 1367–1376 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, M.L., Li, X.Z., Zheng, J.L.: The \((G^{\prime }/G)\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)

    Article  MathSciNet  Google Scholar 

  12. Zheng, B.: \((G^{\prime }/G)\)-Expansion method for solving fractional partial differential equations in the theory of mathematical physics. Commun. Theor. Phys. (Beijing, China) 58, 623–630 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hosseini, K., Ayati, Z.: Exact solutions of space-time fractional EW and modified EW equations using Kudryashov method. Nonlinear Sci. Lett. A 7(2), 58–66 (2016)

    Google Scholar 

  14. Zheng, B.: Exp-function method for solving fractional partial differential equations. Sci. World J. 2013, 465723 (2013)

    Google Scholar 

  15. Bekir, A., Guner, Ö., Ünsal, Ö.: The first integral method for exact solutions of nonlinear fractional differential equations. J. Comput. Nonlinear Dyn. 10(2), 021020 (2015)

    Article  Google Scholar 

  16. Zhou, Y., Wang, M., Wang, Y.: Periodic wave solutions to a coupled KdV equations with variable coefficients. Phys. Lett. A 308, 31–36 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, M., Zhou, Y.: The periodic wave solutions for the Klein-Gordon-Schrödinger equations. Phys. Lett. A 318, 84–92 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rizvi, S.T.R., Ali, K.: Jacobian elliptic periodic traveling wave solutions in the negative-index materials. Nonlinear Dyn. 87, 1967–1972 (2017)

    Article  Google Scholar 

  19. Hasegawa, A.: Plasma Instabilities and Nonlinear Effects. Springer, Berlin (1975)

    Book  Google Scholar 

  20. Gedalin, M., Scott, T.C., Band, Y.B.: Optical solitary waves in the higher order nonlinear Schrödinger equation. Phys. Rev. Lett 78, 448–451 (1997)

    Article  Google Scholar 

  21. Gray, P., Scott, S.: Chemical Oscillations and Instabilities. Clarendon, Oxford (1990)

    Google Scholar 

  22. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  23. Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publishers, Dordrecht (1994)

    Book  MATH  Google Scholar 

  24. Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, New York (1995)

    MATH  Google Scholar 

  25. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-deVries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)

    Article  MATH  Google Scholar 

  26. Yu, J., Lou, S.Y.: Deformation and \((3 + 1)\)-dimensional integrable model. Sci. China Ser. A 43, 655–660 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lou, S.Y.: Searching for higher dimensional integrable models from lower ones via Painlev\(\acute{e}\) analysis. Phys. Rev. Lett. 80, 5027–5031 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. El-Wakil, S.A., Abdou, M.A., Elhanbaly, A.: New solitons and periodic wave solutions for nonlinear evolution equations. Phys. Lett. A 353, 40–7 (2006)

    Article  Google Scholar 

  29. Jiang, B., Liu, Y., Zhang, J., et al.: Bifurcations and some new traveling wave solutions for the CH-\(\gamma \) equation. Appl. Math. Comput. 228(1), 220–233 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Ganguly, A., Das, A.: Explicit solutions and stability analysis of the \((2 + 1)\) dimensional KP-BBM equation with dispersion effect. Commun. Nonlin. Sci. Numer. Simulat 25, 102–117 (2015)

    Article  MathSciNet  Google Scholar 

  31. Das, A., Ganguly, A.: Existence and stability of dispersive solutions to the Kadomtsev-Petviashvili equation in the presence of dispersion effect. Commun. Nonlin. Sci. Numer. Simulat 48, 326–339 (2017)

    Article  MathSciNet  Google Scholar 

  32. Zhou, Y., Peng, L.: Weak solutions of the time-fractional Navier-Stokes equations and optimal control. Comput. Math. Appl. 73, 1016–1027 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Unsal, O., Guner, O., Bekir, A.: Analytical approach for space-time fractional Klein-Gordon equation. Optik 135, 337–345 (2017)

    Article  Google Scholar 

  34. Hongsit, N., Allen, M.A., Rowlands, G.: Growth rate of transverse instabilities of solitary pulse solutions to a family of modified Zakharov-Kuznetsov equations. Phys. Lett. A 372(14), 2420 (2008)

    Article  MATH  Google Scholar 

  35. Wazwaz, A.M.: The extended tanh method for the Zakharov-Kuznetsov (ZK) equation, the modified ZK equation, and its generalized forms. Commun. Nonlinear Sci. Numer. Simul. 13(6), 1039–47 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Biswas, A., Zerrad, E.: \(1\)-soliton solution of the Zakharov-Kuznetsov equation with dual-power law nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 14, 3574–3577 (2009)

    Article  MATH  Google Scholar 

  37. Yan, Z.L., Liu, X.Q.: Symmetry reductions and explicit solutions for a generalized Zakharov-Kuznetsov equation. Commun. Theor. Phys. (Beijing, China) 45, 29–32 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ferdousi, M., Miah, M.R., Sultana, S., Mamun, A.A.: Dust-acoustic shock waves in an electron depleted nonextensive dusty plasmas. Astrophys. Space Sci. 360, 43 (2015)

    Article  Google Scholar 

  39. Jannat, N., Ferdousi, M., Mamun, A.A.: Ion-acoustic shock waves in nonextensive multi-ion plasmas. Commun. Theor. Phys. 64, 479–484 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ema, S.A., Ferdousi, M., Sultana, S., Mamun, A.A.: Dust-ion-acoustic shock waves in nonextensive dusty multi-ion plasmas. Eur. Phys. J. Plus 130, 46 (2015)

    Article  Google Scholar 

  41. Uddin, M.J., Alam, M.S., Mamun, A.A.: Positron-acoustic shock waves associated with cold viscous positron fluid in superthermal electron-positron-ion plasmas. Phys. Plasmas 22, 062111 (2015)

    Article  MATH  Google Scholar 

  42. Li, J., Chen, G.: Bifurcations of travelling wave solutions for four classes of nonlinear wave equations. Int. J. Bifurcation Chaos 15, 3973 (2005)

    Article  MATH  Google Scholar 

  43. Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amiya Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das, A. (2020). Exact Traveling Wave Solutions and Bifurcation Analysis for Time Fractional Dual Power Zakharov-Kuznetsov-Burgers Equation. In: Manna, S., Datta, B., Ahmad, S. (eds) Mathematical Modelling and Scientific Computing with Applications. ICMMSC 2018. Springer Proceedings in Mathematics & Statistics, vol 308. Springer, Singapore. https://doi.org/10.1007/978-981-15-1338-1_3

Download citation

Publish with us

Policies and ethics