Skip to main content
Log in

An effective pressure–flow characterization of respiratory asynchronies in mechanical ventilation

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Ineffective effort during expiration (IEE) occurs when there is a mismatch between the demand of a mechanically ventilated patient and the support delivered by a Mechanical ventilator during the expiration. This work presents a pressure–flow characterization for respiratory asynchronies and validates a machine-learning method, based on the presented characterization, to identify IEEs. 1500 breaths produced by 8 mechanically-ventilated patients were considered: 500 of them were included into the training set and the remaining 1000 into the test set. Each of them was evaluated by 3 experts and classified as either normal, artefact, or containing inspiratory, expiratory, or cycling-off asynchronies. A software implementing the proposed method was trained by using the experts’ evaluations of the training set and used to identify IEEs in the test set. The outcomes were compared with a consensus of three expert evaluations. The software classified IEEs with sensitivity 0.904, specificity 0.995, accuracy 0.983, positive and negative predictive value 0.963 and 0.986, respectively. The Cohen’s kappa is 0.983 (with 95% confidence interval (CI): [0.884, 0.962]). The pressure–flow characterization of respiratory cycles and the monitoring technique proposed in this work automatically identified IEEs in real-time in close agreement with the experts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient–ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32(10):1515–22.

    Article  Google Scholar 

  2. Vignaux L, Vargas F, Roeseler J, Tassaux D, Thille AW, Kossowsky MP, Brochard L, Jolliet P. Patient–ventilator asynchrony during non-invasive ventilation for acute respiratory failure: a multicenter study. Intensive Care Med. 2009;35(5):840–6.

    Article  Google Scholar 

  3. Chen CW, Lin WC, Hsu CH, Cheng KS, Lo CS. Detecting ineffective triggering in the expiratory phase in mechanically ventilated patients based on airway flow and pressure deflection: Feasibility of using a computer algorithm*. Crit Care Med. 2008;36(2):455–61.

    Article  Google Scholar 

  4. Mulqueeny Q, Ceriana P, Carlucci A, Fanfulla F, Delmastro M, Nava S. Automatic detection of ineffective triggering and double triggering during mechanical ventilation. Intensive Care Med. 2007;33(11):2014–8.

    Article  Google Scholar 

  5. Schmidt M, Demoule A, Polito A, Porchet R, Aboab J, Siami S, Morelot-Panzini C, Similowski T, Sharshar T. Dyspnea in mechanically ventilated critically ill patients*. Crit Care Med. 2011;39(9):2059–65.

    Article  Google Scholar 

  6. Gilstrap D, MacIntyre N. Patient–ventilator interactions, implications for clinical management. Am J Respir Crit Care Med. 2013;188(9):1058–68.

    Article  Google Scholar 

  7. Murias G, Villagra A, Blanch L. Patient–ventilator dyssynchrony during assisted invasive mechanical ventilation. Minerva Anestesiol. 2013;79(4):434–44.

    CAS  PubMed  Google Scholar 

  8. Vitacca M, Bianchi L, Zanotti E, Vianello A, Barbano L, Porta R, Clini E. Assessment of physiologic variables and subjective comfort under different levels of pressure support ventilation. CHEST J. 2004;126(3):851–9.

    Article  Google Scholar 

  9. Schmidt M, Banzett RB, Raux M, Morélot-Panzini C, Dangers L, Similowski T, Demoule A. Unrecognized suffering in the icu: addressing dyspnea in mechanically ventilated patients. Intensive Care Med. 2014;40(1):1–10.

    Article  Google Scholar 

  10. De Wit M, Miller KB, Green DA, Ostman HE, Gennings C, Epstein SK. Ineffective triggering predicts increased duration of mechanical ventilation. Crit Care Med. 2009;37(10):2740–5.

    PubMed  Google Scholar 

  11. Hansen-Flaschen JH, Brazinsky S, Basile C, Lanken PN. Use of sedating drugs and neuromuscular blocking agents in patients requiring mechanical ventilation for respiratory failure: a national survey. JAMA. 1991;266(20):2870–5.

    Article  CAS  Google Scholar 

  12. de Wit M, Pedram S, Best AM, Epstein SK. Observational study of patient–ventilator asynchrony and relationship to sedation level. J Crit Care. 2009;24(1):74–80.

    Article  Google Scholar 

  13. Shehabi Y, Chan L, Kadiman S, Alias A, Ismail WN, Tan MATI, Khoo TM, Ali SB, Saman MA, Shaltut A, et al. Sedation depth and long-term mortality in mechanically ventilated critically ill adults: a prospective longitudinal multicentre cohort study. Intensive Care Med. 2013;39(5):910–8.

    Article  Google Scholar 

  14. Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, Zhu J, Sachdeva R, Sonnad S, Kaiser LR, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358(13):1327–35.

    Article  CAS  Google Scholar 

  15. Jaber S, Jung B, Matecki S, Petrof BJ. Clinical review: ventilator-induced diaphragmatic dysfunction-human studies confirm animal model findings. Crit Care. 2011;15(2):206.

    Article  Google Scholar 

  16. Kallet RH. Patient–ventilator interaction during acute lung injury, and the role of spontaneous breathing: part 1: respiratory muscle function during critical illness. Respir Care. 2011;56(2):181–9.

    Article  Google Scholar 

  17. Blanch L, Villagra A, Sales B, Montanya J, Lucangelo U, Luján M, García-Esquirol O, Chacón E, Estruga A, Oliva JC, et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med. 2015;41(4):633–41.

    Article  Google Scholar 

  18. Kondili E, Prinianakis G, Georgopoulos D. Patient–ventilator interaction. Br J Anaesth. 2003;91(1):106–19.

    Article  CAS  Google Scholar 

  19. Colombo D, Cammarota G, Alemani M, Carenzo L, Barra FL, Vaschetto R, Slutsky AS, Della Corte F, Navalesi P. Efficacy of ventilator waveforms observation in detecting patient–ventilator asynchrony. Crit Care Med. 2011;39(11):2452–7.

    Article  Google Scholar 

  20. Mauri T, Yoshida T, Bellani G, Goligher EC, Carteaux G, Rittayamai N, Mojoli F, Chiumello D, Piquilloud L, Grasso S, et al. Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med. 2016;42(9):1360–73.

    Article  Google Scholar 

  21. Akoumianaki E, Maggiore SM, Valenza F, Bellani G, Jubran A, Loring SH, Pelosi P, Talmor D, Grasso S, Chiumello D, et al. The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med. 2014;189(5):520–31.

    Article  Google Scholar 

  22. Sinderby C, Liu S, Colombo D, Camarotta G, Slutsky AS, Navalesi P, Beck J. An automated and standardized neural index to quantify patient–ventilator interaction. Crit Care. 2013;17(5):R239.

    Article  Google Scholar 

  23. Jansen D, Jonkman AH, Roesthuis L, Gadgil S, van der Hoeven JG, Scheffer GJJ, Girbes A, Doorduin J, Sinderby CS, Heunks LM. Estimation of the diaphragm neuromuscular efficiency index in mechanically ventilated critically ill patients. Crit Care. 2018;22(1):238.

    Article  Google Scholar 

  24. Barwing J, Ambold M, Linden N, Quintel M, Moerer O. Evaluation of the catheter positioning for neurally adjusted ventilatory assist. Intensive Care Med. 2009;35(10):1809–14.

    Article  Google Scholar 

  25. de Abreu MG, Belda FJ. Neurally adjusted ventilatory assist: letting the respiratory center take over control of ventilation. Intensive Care Med. 2013;39(8):1481–3. https://doi.org/10.1007/s00134-013-2953-5.

    Article  Google Scholar 

  26. Vaporidi K, Babalis D, Chytas A, Lilitsis E, Kondili E, Amargianitakis V, Chouvarda I, Maglaveras N, Georgopoulos D. Clusters of ineffective efforts during mechanical ventilation: impact on outcome. Intensive Care Med. 2017;43(2):184–91.

    Article  Google Scholar 

  27. Blanch L, Sales B, Montanya J, Lucangelo U, Garcia-Esquirol O, Villagra A, Chacon E, Estruga A, Borelli M, Burgueño MJ, et al. Validation of the Better Care® system to detect ineffective efforts during expiration in mechanically ventilated patients: a pilot study. Intensive Care Med. 2012;38(5):772–80.

    Article  Google Scholar 

  28. Younes M, Brochard L, Grasso S, Kun J, Mancebo J, Ranieri M, Richard JC, Younes H. A method for monitoring and improving patient: ventilator interaction. Intensive Care Med. 2007;33(8):1337–46.

    Article  Google Scholar 

  29. Lucangelo U, Fabris F, Bortolussi L, Casagrande A, Borelli M, Quintavalle F. Apparatus to identify respiratory asynchronies in an assisted breathing machine. (No. EP 3308819 (A1)), April 18, 2018. https://lens.org/009-096-220-965-258.

  30. Campbell EJM. The respiratory muscles and the mechanics of breathing. Cambridge: Lloyd-Luke; 1958.

    Google Scholar 

  31. Cabello B, Mancebo J. Work of breathing. In: Applied physiology in intensive care medicine, vol. 1. New York: Springer; 2012. pp. 11–4.

  32. Oliphant T. NumPy: a guide to NumPy. New York: Trelgol Publishing; 2006. http://www.numpy.org/.

  33. McKinney W. Data structures for statistical computing in Python. In: van der Walt S, Millman J, editors. Proceedings of the 9th Python in science conference. Sante Fe: Flow Science, Inc.; 2010. p. 51–6.

    Google Scholar 

  34. Mckinney W. pandas: a Foundational Python library for data analysis and statistics. Python High Performance Science Computer 2011.

  35. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.

    Google Scholar 

  36. Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, Niculae V, Prettenhofer P, Gramfort A, Grobler J, Layton R, VanderPlas J, Joly A, Holt B, Varoquaux G. API design for machine learning software: experiences from the scikit-learn project. In: ECML PKDD workshop: languages for data mining and machine learning; 2013. pp. 108–22.

  37. Scikit-learn’s Authors, Contributors: scikit-learn user manual; 2018. https://scikit-learn.org/stable/user_guide.html. Accessed 5 May 2019.

  38. Borağan Aruoba S, Fernández-Villaverde J. A comparison of programming languages in macroeconomics. J Econ Dyn Control. 2015;58:265–73. https://doi.org/10.1016/j.jedc.2015.05.009.

    Article  Google Scholar 

Download references

Funding

This work is partially supported by INdAM/GNCS. Lluis Blanch is supported in part by Plan Avanza TSI-020302-2008-38, Ministerio de Industria, Turismo y Comercio (Spain) and Ministerio de Ciencia, Innovación y Universidades (Spain) and also Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (Grant No. Logic Programming for early detection of pancreatic cancer).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Casagrande.

Ethics declarations

Conflict of interest

Lluis Blanch is inventor of one Corporació Sanitaria Parc Taulí owned US patent: “A Method and system for managed related patient parameters provided by a monitoring device”, US Patent No. 12/538,940. Lluis Blanch is a founder of BetterCare S.L.: a research and development company, spin-off of Corporació Sanitària Parc Taulí. Lluis Blanch is supported in part by Plan Avanza TSI-020302-2008-38, MCYIN and MITYC (Spain). Umberto Lucangelo own stock options of BetterCare S.L. Alberto Casagrande, Francesco Quintavalle, Francesco Fabris, and Umberto Lucangelo are inventors of the EU patent “Apparatus To Identify Respiratory Asynchronies In An Assisted Breathing Machine” European Patent no. EP 3308819 (A1) [29].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casagrande, A., Quintavalle, F., Fernandez, R. et al. An effective pressure–flow characterization of respiratory asynchronies in mechanical ventilation. J Clin Monit Comput 35, 289–296 (2021). https://doi.org/10.1007/s10877-020-00469-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-020-00469-z

Keywords

Navigation