Skip to main content

Advertisement

Log in

Inhibition of Quorum Sensing, Motility and Biofilm Formation of Pseudomonas aeruginosa by Copper Oxide Nanostructures

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Quorum sensing (QS) is the communication between bacterial cells governed by their population density and regulated by the genes controlling virulence factors and biofilm formation. Multiple mechanisms of biofilms are resistive to antimicrobial chemotherapy; therefore novel strategies are required to overcome its limitations. Here, we report the effect of various copper oxide nanostructures (CuO-NSs) on quorum sensing inhibition. The two-dimensional CuO-NSs such as interlaced nanodiscs, nanodiscs and leaf-shaped nanosheets are prepared via a simple chemical method. The Quorum sensing inhibition (QSI) activity of all the CuO-NS are examined using reporter strain Chromobacterium violaceum CV026 and Escherichia coli pSB1142. We found that the CuO-interlaced nanodisc structures exhibit better QSI activity than nanodiscs and leaf-shaped sheets. The interlaced nanodisc structures are inhibited various long-chain N-acyl homoserine lactones (AHLs) mediated QS individually and confirmed by other QS-associated phenomena for Pseudomonas aeruginosa, including biofilm inhibition, inhibition of virulence factors such as pyocyanin, protease production and swarming motility. Thus QSI activity of CuO-NSs is solely dependent on specific shape offering large surface area and more active sites. The CuO-NS is effective quorum sensing inhibitors, which has potential clinical applications in the management of P. aeruginosa associated infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Nikaido (2009). Annu. Rev. Biochem. 78, 119–146.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. S. Lanini, S. D’Arezzo, V. Puro, L. Martini, F. Imperi, P. Piselli, M. Montanaro, S. Paoletti, P. Visca and G. Ippolito (2011). PLoS One 6, e17064.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. C. Solano, M. Echeverz and I. Lasa (2014). Curr. Opin. Microbiol. 18, 96–104.

    Article  PubMed  CAS  Google Scholar 

  4. W. L. Ng and B. L. Bassler (2009). Annu. Rev. Genet. 43, 197–222.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. O. Kareb and M. Aïder (2020). Probiotics Antimicrob. Proteins 12, 5–17

    Article  PubMed  CAS  Google Scholar 

  6. S. T. Rutherford and B. L. Bassler (2012). Cold Spring Harb. Perspect. Med. 2, a012427.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. V. C. Kalia, T. K. Wood and P. Kumar (2014). Microb. Ecol. 68, 13–23.

    Article  PubMed  CAS  Google Scholar 

  8. M. Rybtke, L. D. Hultqvist, M. Givskov and T. Tolker-Nielsen (2015). J. Mol. Biol. 427, 3628–3645.

    Article  PubMed  CAS  Google Scholar 

  9. S. L. Gellatly and R. E. W. Hancock (2013). Pathog. Dis. 67, 159–173.

    Article  PubMed  CAS  Google Scholar 

  10. K. G. Kerr and A. M. Snelling (2009). J. Hosp. Infect. 73, 338–344.

    Article  PubMed  CAS  Google Scholar 

  11. V. C. Kalia (2013). Biotechnol. Adv. 31, 224–245.

    Article  PubMed  CAS  Google Scholar 

  12. M. H. Shaikh, D. D. Subhedar, B. B. Shingate, F. A. Kalam Khan, J. N. Sangshetti, V. M. Khedkar, L. Nawale, D. Sarkar, G. R. Navale and S. S. Shinde (2016). Med. Chem. Res. 25, 790–804.

    Article  CAS  Google Scholar 

  13. G. Brackman and T. Coenye (2014). Curr. Pharm. Des. 21, 5–11.

    Article  CAS  Google Scholar 

  14. R. A. Petros and J. M. DeSimone (2010). Nat. Rev. Drug Discov. 9, 615–627.

    Article  PubMed  CAS  Google Scholar 

  15. M. Shahmiri, N. A. Ibrahim, F. Shayesteh, N. Asim and N. Motallebi (2013). J. Mater. Res. 28, 3109–3118.

    Article  CAS  Google Scholar 

  16. G. R. Navale, C. S. Rout, K. N. Gohil, M. S. Dharne, D. J. Late and S. S. S. Shinde (2015). RSC Adv. 5, 74726–74733.

    Article  CAS  Google Scholar 

  17. G. R. Navale, M. Thripuranthaka and S. S. Late, Dattatray J Shinde (2015). JSM Nanotechnol. Nanomedicine 3, 1033.

    Google Scholar 

  18. J. B. Deshpande, G. R. Navale, M. S. Dharne and A. A. Kulkarni (2020). Chem. Eng. Technol. 43, 582–592.

    Article  CAS  Google Scholar 

  19. J. Singh, T. Dutta, K.-H. Kim, M. Rawat, P. Samddar and P. Kumar (2018). J. Nanobiotechnology 16, 84.

    Article  CAS  Google Scholar 

  20. G. Ren, D. Hu, E. W. C. Cheng, M. A. Vargas-Reus, P. Reip and R. P. Allaker (2009). Int. J. Antimicrob. Agents 33, 587–590.

    Article  PubMed  CAS  Google Scholar 

  21. M. Ramasamy and J. Lee (2016). Biomed Res. Int. 2016, 1–17.

    Article  CAS  Google Scholar 

  22. D. Mott, J. Galkowski, L. Wang, J. Luo and C.-J. Zhong (2007). Langmuir 23, 5740–5745.

    Article  PubMed  CAS  Google Scholar 

  23. A. Khan, A. Rashid, R. Younas and R. Chong (2016). Int. Nano Lett. 6, 21–26.

    Article  CAS  Google Scholar 

  24. N. Singh, A. Patil, A. A. Prabhune, M. Raghav and G. Goel (2017). Virulence 8, 275–281.

    Article  PubMed  CAS  Google Scholar 

  25. J. H. Lee, Y. G. Kim, M. H. Cho and J. Lee (2014). Microbiol. Res. 169, 888–896.

    Article  PubMed  CAS  Google Scholar 

  26. A. Patil, K. Joshi-Navre, R. Mukherji and A. Prabhune (2017). Appl. Biochem. Biotechnol. 181, 1533–1548.

    Article  PubMed  CAS  Google Scholar 

  27. T. Krishnan, W. F. Yin and K. G. Chan (2012). Sensors 12, 4016–4030.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. R. Mukherji and A. Prabhune (2015). World J. Microbiol. Biotechnol. 31, 841–849.

    Article  PubMed  CAS  Google Scholar 

  29. G. R. Navale, M. S. Dharne and S. S. Shinde (2015). RSC Adv. 5, 68136–68142.

    Article  CAS  Google Scholar 

  30. M. Kalia, V. K. Yadav, P. K. Singh, D. Sharma, H. Pandey, S. S. Narvi and V. Agarwal (2015). PLoS One 10, e0135495.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. J. W. Zhou, H. Z. Luo, H. Jiang, T. Jian, Z. Chen and A.Q. Jia (2018). J. Agric. Food Chem. 66, 1620–1628.

    Article  PubMed  CAS  Google Scholar 

  32. M. S. Wagh, R. H. Patil, D. K. Thombre, M. V. Kulkarni, W. N. Gade and B. B. Kale (2013). Appl. Microbiol. Biotechnol. 97, 3593–3601.

    Article  CAS  Google Scholar 

  33. B. R. Singh, B. N. Singh, A. Singh, W. Khan, A. H. Naqvi and H. B. Singh (2015). Sci. Rep. 5, 13719.

    Article  PubMed  PubMed Central  Google Scholar 

  34. V. Costantino, G. Della Sala, K. Saurav, R. Teta, R. Bar-Shalom, A. Mangoni and L. Steindler (2017). Mar. Drugs 15, 59.

    Article  PubMed Central  CAS  Google Scholar 

  35. N. A. Al-Shabib, F. M. Husain, N. Ahmad, F. A. Qais, A. Khan, A. Khan, M. S. Khan, J. M. Khan, S. A. Shahzad and I. Ahmad (2018). J. Nanomater., 2018, 1–11.

    Google Scholar 

  36. H. S. Kim and H. D. Park (2013). PLoS One 8, e76106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. G. Rampioni, M. Schuster, E. P. Greenberg, E. Zennaro and L. Leoni (2009). FEMS Microbiol. Lett. 301, 210–217.

    Article  PubMed  CAS  Google Scholar 

  38. M. Muller (2006). Free Radic. Biol. Med. 41, 1670–1677.

    Article  PubMed  CAS  Google Scholar 

  39. R. Wilson, T. Pitt, G. Taylor, D. Watson, J. MacDermot, D. Sykes, D. Roberts and P. Cole (1987). J. Clin. Invest. 79, 221–229.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. G. M. Denning, L. A. Wollenweber, M. A. Railsback, C. D. Cox, L. L. Stoll and B. E. Britigan (1998). Infect. Immun. 66, 5777–5784.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. E. Banin, M. L. Vasil and E. P. Greenberg (2005). Proc. Natl. Acad. Sci. 102, 11076–11081.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. A. Adonizio, K.-F. Kong and K. Mathee (2008). Antimicrob. Agents Chemother. 52, 198–203.

    Article  PubMed  CAS  Google Scholar 

  43. M. A. Ansari, H. M. Khan, A. A. Khan, S. S. Cameotra and R. Pal (2014). Appl. Nanosci. 4, 859–868.

    Article  CAS  Google Scholar 

  44. S. A. Masurkar, P. R. Chaudhari, V. B. Shidore and S. P. Kamble (2012). IET Nanobiotechnology 6, 110–114.

    Article  PubMed  CAS  Google Scholar 

  45. N. Rabin, Y. Zheng, C. Opoku-Temeng, Y. Du, E. Bonsu and H. O. Sintim (2015). Future Med. Chem. 7, 647–671.

    Article  PubMed  CAS  Google Scholar 

  46. A. Barapatre, K. R. Aadil and H. Jha (2016). Bioresour. Bioprocess. 3, 8.

    Article  Google Scholar 

  47. S. Meghana, P. Kabra, S. Chakraborty and N. Padmavathy (2015). RSC Adv. 5, 12293–12299.

    Article  CAS  Google Scholar 

  48. M. Shi, H. S. Kwon, Z. Peng, A. Elder and H. Yang (2012). ACS Nano 6, 2157–2164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. B. Fahmy and S. A. Cormier (2009). Toxicol. Vitr. 23, 1365–1371.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

D. D. and P. W. would like to acknowledge the Director, National Centre for Nanosciences and Nanotechnology, and Director, CSIR-National Chemical Laboratory for their valuable support. Mr. Shobhnath Gupta is highly acknowledged for discussion and help in nanomaterials preparation and characterizations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahesh S. Dharne or Pravin S. Walke.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1009 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desai, D.G., Swarali, H., Navale, G.R. et al. Inhibition of Quorum Sensing, Motility and Biofilm Formation of Pseudomonas aeruginosa by Copper Oxide Nanostructures. J Clust Sci 32, 1531–1541 (2021). https://doi.org/10.1007/s10876-020-01916-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01916-2

Keywords

Navigation