Skip to main content
Log in

Evaluation of anti-quorum sensing activity of silver nanowires

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A menace of antimicrobial resistance with growing difficulties in eradicating clinical pathogens owing to the biofilm has prompted us to take up a facile aqueous-phase approach for the synthesis of silver nanowires (SNWs) by using ethylene glycol as a reducing agent and polyvinylpyrrolidone (PVP) as a capping agent. This synthesis is a reflux reaction seedless process. The obtained SNWs were about 200–250 nm in diameter and up to 3–4 μm in length. The SNWs were characterized by field emission scanning electron microscopy, transmission electron microscopy, UV–Vis spectroscopy, and X-Ray powder diffraction, and the chemical composition of the sample was examined by energy dispersive X-ray spectrum. The SNWs did not show an antibacterial activity against test organisms, Bacillus subtilis NCIM 2063 and Escherichia coli NCIM 2931; however, it showed a promising property of a quorum sensing-mediated inhibition of biofilm in Pseudomonas aeruginosa NCIM 2948 and violacein synthesis in Chromobacterium violaceum ATCC 12472, which is hitherto unattempted, by polyol approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Babapour A, Yang B, Bahang S, Cao W (2011) Low-temperature sol-gel-derived nanosilver-embedded silane coating as biofilm inhibitor. Nanotechnology 22:155602

    Article  CAS  Google Scholar 

  • Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23:690–718

    Article  CAS  Google Scholar 

  • Bazaka K, Jacob MV, Crawford RJ, Ivanova EP (2012) Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms. Appl Microbiol Biotechnol 95:299–311

    Article  CAS  Google Scholar 

  • Blango MG, Mulvey MA (2009) Bacterial landlines: contact-dependent signaling in bacterial populations. Curr Opin Microbiol 12:177–181

    Article  CAS  Google Scholar 

  • Carotenuto G, Pepe GP, Nicolais L (2000) Preparation and characterization of nano-sized Ag/PVP composites for optical applications. Eur Phys J B 16:11–17

    Article  CAS  Google Scholar 

  • Caswell KK, Bender CM, Murphy CJ (2003) Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Lett 3:667–669

    Article  CAS  Google Scholar 

  • Chen D, Gao L (2004) Large-scale growth and end-to-end assembly of silver nanorods by PVP-directed polyol process. J Cryst Growth 264:216–222

    Article  CAS  Google Scholar 

  • Chen D, Qiao X, Qiu X, Chen J, Jiang R (2010) Convenient synthesis of silver nanowires with adjustable diameters via a solvothermal method. J Colloid Interface Sci 344:286–291

    Article  CAS  Google Scholar 

  • Chen G, Swem Lee R, Swem Danielle L, Stauff Devin L, O'Loughlin Colleen T, Jeffrey Philip D, Bassler Bonnie L, Hughson Frederick M (2011) A strategy for antagonizing quorum sensing. Mol Cell 42:199–209

    Article  CAS  Google Scholar 

  • Chen J, Wiley BJ, Xia Y (2007) One-dimensional nanostructures of metals: large-scale synthesis and some potential applications. Langmuir 23:4120–4129

    Article  CAS  Google Scholar 

  • Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12

    Article  CAS  Google Scholar 

  • Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122

    Article  CAS  Google Scholar 

  • Evans PR, Kullock R, Hendren WR, Atkinson R, Pollard RJ, Eng LM (2008) Optical transmission properties and electric field distribution of interacting 2D silver nanorod arrays. Adv Funct Mater 18:1075–1079

    Article  CAS  Google Scholar 

  • Fabrega J, Renshaw JC, Lead JR (2009) Interactions of silver nanoparticles with Pseudomonas putida biofilms. Environ Sci Technol 43:9004–9009

    Article  CAS  Google Scholar 

  • Favre-Bonté S, Köhler T, Van Delden C (2003) Biofilm formation by Pseudomonas aeruginosa: role of the C4-HSL cell-to-cell signal and inhibition by azithromycin. J Antimicrob Chemoth 52:598–604

    Article  Google Scholar 

  • Fievet F, Lagier JP, Blin B, Beaudoin B, Figlarz M (1989) Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ionics 32–33(Part 1):198–205

    Article  Google Scholar 

  • Hu JQ, Chen Q, Xie ZX, Han GB, Wang RH, Ren B, Zhang Y, Yang ZL, Tian ZQ (2004) A simple and effective route for the synthesis of crystalline silver nanorods and nanowires. Adv Funct Mater 14:183–189

    Article  CAS  Google Scholar 

  • Hu L, Kim HS, Lee J-Y, Peumans P, Cui Y (2010) Scalable coating and properties of transparent, flexible silver nanowire electrodes. ACS Nano 4:2955–2963

    Article  CAS  Google Scholar 

  • Hu X, Chan CT (2004) Photonic crystals with silver nanowires as a near-infrared superlens. App Phys Lett 85:1520–1522

    Article  CAS  Google Scholar 

  • Huang Y, Duan X, Cui Y, Lauhon LJ, Kim K-H, Lieber CM (2001) Logic gates and computation from assembled nanowire building blocks. Science 294:1313–1317

    Article  CAS  Google Scholar 

  • Kalishwaralal K, BarathManiKanth S, Pandian SRK, Deepak V, Gurunathan S (2010) Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloid Surfaces B 79:340–344

    Article  CAS  Google Scholar 

  • Kim S, Baek Y-W, An Y-J (2011) Assay-dependent effect of silver nanoparticles to Escherichia coli and Bacillus subtilis. Appl Microbiol Biotechnol 92:1045–1052

    Article  CAS  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C-Y, Kim Y-K, Lee Y-S, Jeong DH, Cho M-H (2007) Antimicrobial effects of silver nanoparticles. Nanomed- Nanotechnol 3:95–101

    Article  CAS  Google Scholar 

  • Knetsch MLW, Koole LH (2011) New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymer 3:340–366

    Article  CAS  Google Scholar 

  • Knothe H, Antal M, Krcméry V (1987) Imipenem and ceftazidime resistance in Pseudomonas aeruginosa and Klebsiella pneumoniae. J Antimicrob Chemoth 19:136–138

    Article  CAS  Google Scholar 

  • Lellouche J, Kahana E, Elias S, Gedanken A, Banin E (2009) Antibiofilm activity of nanosized magnesium fluoride. Biomaterials 30:5969–5978

    Article  CAS  Google Scholar 

  • Martinelli D, Grossmann G, Sequin U, Brandl H, Bachofen R (2004) Effects of natural and chemically synthesized furanones on quorum sensing in Chromobacterium violaceum. BMC Microbiol 4:25

    Article  Google Scholar 

  • Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, Camargo ER, Barbosa DB (2009) The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Ag 34:103–110

    Article  CAS  Google Scholar 

  • Murphy CJ, Gole AM, Hunyadi SE, Orendorff CJ (2006) One-dimensional colloidal gold and silver nanostructures. Inorg Chem 45:7544–7554

    Article  CAS  Google Scholar 

  • Peppler K, Janek J (2007) Template assisted solid state electrochemical growth of silver micro- and nanowires. J Electrochim Acta 53:319–323

    Article  CAS  Google Scholar 

  • Rai MK, Deshmukh SD, Ingle AP, Gade AK (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112:841–852

    Article  CAS  Google Scholar 

  • Rana D, Matsuura T (2010) Surface modifications for antifouling membranes. Chem Rev 110:2448–2471

    Article  CAS  Google Scholar 

  • Reading NC, Sperandio V (2006) Quorum sensing: the many languages of bacteria Fems. Microbiol Lett 254:1–11

    Article  CAS  Google Scholar 

  • Salata O (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnology 2:3

    Article  Google Scholar 

  • Sancia R, Volkan M (2009) Surface-enhanced Raman scattering (SERS) studies on silver nanorod substrates. Sensor Actuat B-Chem 139:150–155

    Article  Google Scholar 

  • Schuster M, Peter Greenberg E (2006) A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol 296:73–81

    Article  CAS  Google Scholar 

  • Shen Q, Sun J, Wei H, Zhou Y, Su Y, Wang D (2007) Fabrication of silver nanorods controlled by a segmented copolymer. J Phys Chem C 111:13673–13678

    Article  CAS  Google Scholar 

  • Silvert P-Y, Herrera-Urbina R, Duvauchelle N, Vijayakrishnan V, Elhsissen KT (1996) Preparation of colloidal silver dispersions by the polyol process. Part 1-Synthesis and characterization. J Mater Chem 6:573–577

    Article  CAS  Google Scholar 

  • Slistan-Grijalva A, Herrera-Urbina R, Rivas-Silva JF, Ávalos-Borja M, Castillón-Barraza FF, Posada-Amarillas A (2005) Assessment of growth of silver nanoparticles synthesized from an ethylene glycol–silver nitrate–polyvinylpyrrolidone solution. Physica E 25:438–448

    Article  CAS  Google Scholar 

  • Suman KB, Andrew TF, Rahul VK (2009) A model for signal transduction during quorum sensing in Vibrio harveyi. Phys Biol 6:046008

    Article  Google Scholar 

  • Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  CAS  Google Scholar 

  • Tamboli MS, Kulkarni MV, Patil RH, Gade WN, Navale SC, Kale BB (2012) Nanowires of silver–polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent. Colloid Surfaces B 92:35–41

    Article  CAS  Google Scholar 

  • Tian X, Li J, Pan S (2009) Facile synthesis of single-crystal silver nanowires through a tannin-reduction process. J Naopart Res 11:1839–1844

    Article  CAS  Google Scholar 

  • Wang Z, Liu J, Chen X, Wan J, Qian Y (2005) A simple hydrothermal route to large-scale synthesis of uniform silver nanowires. Chem Eur J 11:160–163

    Article  Google Scholar 

  • Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP (2001) Quorumsensing in Gram-negative bacteria. FEMS Microbiol Rev 25:365–404

    Google Scholar 

  • Wiley B, Sun Y, Mayers B, Xia Y (2005) Shape-controlled synthesis of metal nanostructures: the case of silver. Chem Eur J 11:454–463

    Article  CAS  Google Scholar 

  • Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization and applications. Adv Mater 15:353–389

    Article  CAS  Google Scholar 

  • Yang G-W, Li H (2008) Sonochemical synthesis of highly monodispersed and size controllable Ag nanoparticles in ethanol solution. Mater Lett 62:2189–2191

    Article  Google Scholar 

  • You T, Xu S, Sun S, Song X (2009) Controllable synthesis of pentagonal silver nanowires via a simple alcohol-thermal method. Mater Lett 63:920–922

    Article  CAS  Google Scholar 

  • Zhai T, Fang X, Liao M, Xu X, Zeng H, Yoshio B, Golberg D (2009) A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors. Sensors 9:6504–6529

    Article  CAS  Google Scholar 

  • Zhu YP, Wang XK, Guo WL, Wang JG, Wang C (2010) Sonochemical synthesis of silver nanorods by reduction of sliver nitrate in aqueous solution. Ultrason Sonochem 17:675–679

    Article  CAS  Google Scholar 

  • Zou K, Zhang XH, Duan XF, Meng XM, Wu SK (2004) Seed-mediated synthesis of silver nanostructures and polymer/silver nanocables by UV irradiation. J Cryst Growth 273:285–291

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. D. P. Amalnerkar, Executive Director, C-MET, for constant encouragement throughout this work and the Department of Electronics and Information Technology (DeitY), New Delhi for the financial support. RP would like to thank UGC-SRF, and DT would like to thank DST-PURSE programme for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milind V. Kulkarni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagh (nee Jagtap), M.S., Patil, R.H., Thombre, D.K. et al. Evaluation of anti-quorum sensing activity of silver nanowires. Appl Microbiol Biotechnol 97, 3593–3601 (2013). https://doi.org/10.1007/s00253-012-4603-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4603-1

Keywords

Navigation