Skip to main content

Inhibition of Bacterial Quorum Sensing Systems by Metal Nanoparticles

  • Chapter
  • First Online:
Metal Nanoparticles in Pharma

Abstract

Quorum sensing (QS ) is a commonly used way for intercellular communication utilizing small, self-generated signal molecules called autoinducers . QS-controlled genes can constitute as much as 10% of bacterial genome. This system controls a variety of bacterial physiological traits, including biofilm formation and pathogenesis. QS signaling pathways are well described in several species including Pseudomonas aeruginosa and Staphylococcus aureus . The inhibition of QS, called quorum quenching (QQ ), can be a potential and promising strategy to combat bacterial infections. Nanoparticles (NPs ) are considered to be potential QS inhibitors which was proved mainly by in vitro experiments. The QQ potential was proved for silver nanoparticles (AgNPs ) which was demonstrated by their ability to inhibit bacterial biofilms. Antibiofilm activity of gold nanoparticles (AuNPs ), zinc oxide nanoparticles (ZnONPs ), copper nanoparticles (CuNPs ), and platinum nanoparticles (PtNPs ) was also shown. As an antibacterial potential of metal NPs is well documented, the ability to inhibit QS additionally argues toward their future usage as an alternative of antibiotics . Moreover, the development of bacterial resistance to NPs was not yet well documented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AgNPs :

Silver nanoparticles

Agr :

Accessory gene regulator

AIPs :

Autoinducing peptides

AuNPs :

Gold nanoparticles

CF :

Cystic fibrosis

CuNPs :

Copper nanoparticles

HSLs :

Homoserine lactones

MRSA:

Methicillin-resistant S. aureus

PIA:

Polysaccharide intercellular antigen

PQS :

Pseudomonas quorum sensing

PtNPs :

Platinum nanoparticles

QQ :

Quorum quenching

QS :

Quorum sensing

RIP:

RNAIII inhibiting peptide

ROS :

Reactive oxygen species

ZnONPs:

Zinc oxide nanoparticles

References

  • Abdelmour A, Arvidson S, Bremell T, Ryden C, Tarkowski A. The accessory gene regulator (agr) controls Staphylococcus aureus virulence in murine arthritis model. Infect Immun. 1993;61:3879–85.

    Google Scholar 

  • Allaker RP. The use of nanoparticles to control oral biofilm formation. J Dent Res. 2010;89:1175–86.

    Article  CAS  PubMed  Google Scholar 

  • Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, Molin S, Givskov M, Tolker-Nielsen T. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol. 2006;59:1114–28.

    Article  CAS  PubMed  Google Scholar 

  • Al-Shabib NA, Husain FM, Ahmed F, Khan RA, Ahmad I, Aksharaed E, Khan MS, Hussain A, Rehman MT, Yusuf M, Hassan I, Khan JM, Ashraf GM, Alsamle AM, Al-Aimi MF, Tarasov VV, Aliev G. Biogenic synthesis of zinc oxide nanostructures from Nigella sativa seed: prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm. Sci Rep. 2016;6:36761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ammons MC, Ward LS, Fisher ST, Wolcott RD, James GA. In vitro susceptibility of established biofilms composed of a clinical wound isolate of Pseudomonas aeruginosa treated with lactoferrin and xylitol. Int J Antimicrob Agents. 2009;33:230–6.

    Article  CAS  PubMed  Google Scholar 

  • Appelrot G, Lellouche J, Perkas N, Nitzan Y, Gedanken A, Banin F. ZnO nanoparticle-coated surfaces inhibit biofilm formation and increase antibiotic susceptibility. RSC Adv. 2012;2:2314.

    Article  CAS  Google Scholar 

  • Bjarnsholt T, van Gennip M, Jakobsen TH, Christensen LD, Jensen PO, Givskov M. In vitro screens for quorum sensing inhibitors and in vivo confirmation of their effect. Nat Protoc. 2010;5:282–93.

    Article  CAS  PubMed  Google Scholar 

  • Boles BR, Horswill AR. Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Phatog. 2005;4:e1000052.

    Article  CAS  Google Scholar 

  • Bubeck Wardenburg J, Schneewind O. Vaccine protection against Staphylococcus aureus pneumonia. J Exp Med. 2008;205:287–94.

    Article  PubMed  CAS  Google Scholar 

  • Castillo-Juárez I, Maeda T, Mandujano-Tinoco EA, Tomás M, Pérez-Eretza B, Garcia-Contreras SJ, Wood TK, Garcia-Contreras R. Role of quorum sensing in bacterial infections. World J Clin Cases. 2015;3:575–98.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen H, Fink GR. Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev. 2006;20:1150–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng L, Weir MD, Xu HHK, Antonucci JM, Kraigsley AM, Lin NJ, Lin-Gibson S, Zhou X. Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles. Dent Mater. 2012;28:561–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clatworty AE, Pierson E, Hung DT. Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol. 2007;3:541–8.

    Article  CAS  Google Scholar 

  • Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic basis on antimicrobial actions of silver nanoparticles. Front Microbiol. 2016;7:1831.

    Article  PubMed  PubMed Central  Google Scholar 

  • Davey ME, O’Toole GA. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev. 2000;64:847–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Déziel E, Gopalan S, Tampakaki AP, Lépine F, Padfield KE, Saucier M, Xiao G, Rahme LG. The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRl or the production of N-acyl-L-homoserine lactones. Mol Microbiol. 2005;55:998–1014.

    Article  PubMed  CAS  Google Scholar 

  • Durán N, Durán M, Dejesus MB, Seabra AB, Fávaro WJ, Nakazato G. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine. 2016;12:789–99.

    Article  PubMed  CAS  Google Scholar 

  • Fabrega J, Renshaw JC, Lead JR. Interaction of silver nanoparticles with Pseudomonas putida biofilms. Environ Sci Technol. 2009;43:9004–9.

    Google Scholar 

  • Fechter P, Caldelari I, Lioliou E, Romby P. Novel aspects of RNA regulation in Staphylococcus aureus. FEBS Lett. 2014;588:2523–9.

    Article  CAS  PubMed  Google Scholar 

  • Gama JA, Abby SS, Vieira-Silva S, Dionisio F, Rocha EP. Immune subversion and quorum-sensing shape in variation in infectious dose among bacterial pathogens. PLoS Pathog. 2013;8:e1002503.

    Article  CAS  Google Scholar 

  • Gambello MJ, Iglewski BH. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J Bacteriol. 1991;173:3000–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Contraras R, Nuňez-López L, Jasso-Chávez R, Kwan BW, Belmont JA, Rangel-Vega A, Maeda T, Wood TK. Quorum sensing enhancement of the stress response promotes resistance to quorum quenching and prevents social cheating. ISME J. 2015;9:115–25.

    Article  CAS  Google Scholar 

  • Garcia-Lara B, Saucedo-Mora MA, Roldán-Sánchez JA, Pérez-Eretza B, Ramasamy M, Lee J, Coria-Jimenez R, Tapia M, Varela-Guerrero V, Garcia-Contrras R. Inhibition of quorum-sensing-dependent virulence factors and biofilm formation of clinical and environmental Pseudomonas aeruginosa strains by ZnO nanoparticles. Lett Appl Microbiol. 2015;61:299–305.

    Article  CAS  PubMed  Google Scholar 

  • Giacometti A, Cirioni O, Ghiselli R, Dell’Acqua G, Orlando F, D’Amato G, Mocchegiani F, Silvestri C. RNAIII-inhibiting peptide improves efficacy of clinically used antibiotics in a murine model of staphylococcal sepsis. Peptides. 2005;26:169–75.

    Article  CAS  PubMed  Google Scholar 

  • Gloyne LS, Grant GD, Perkins AV, Powell KL, McDermott CM, Johnson PV, Anderson GJ, Kiefel M, Anoopkumar-Dukie S. Pyocyanin-induced toxicity in A549 respiratory cells is causally linked to oxidative stress. Toxicol in Vitro. 2011;25:1353–8.

    Article  CAS  PubMed  Google Scholar 

  • Goo E, An JH, Kang Y, Hwang I. Control of bacterial metabolism by quorum sensing. Trends Microbiol. 2015;23:567–76.

    Article  CAS  PubMed  Google Scholar 

  • Gordon RJ, Lowy FD. Pathogenesis of methicillin-resistant Staphylococcus aureus infections. Clin Infect Dis. 2008;46:S350–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall-Stoodley L, Stoodley P. Evolving concepts of biofilm infections. Cell Microbiol. 2009;11:1034–43.

    Article  CAS  PubMed  Google Scholar 

  • Hartmann T, Mühling M, Wolf A, Mariana F, Maskow T, Mertens F, Neu TR, Lerchner J. A chip-calorimetric approach to the analysis of Ag nanoparticle caused inhibition and inactivation of beads-grown bacterial biofilms. J Microbiol Methods. 2013;95:129–37.

    Article  CAS  PubMed  Google Scholar 

  • Hickson J, Diane Yamada S, Berger J, Alverdy JO, Keefe J, Brassler B, Rinker-Schaeffer C. Social interactions in ovarian cancer metastasis: a quorum-sensing hypothesis. Clin Exp Metastasis. 2009;26:67–76.

    Article  PubMed  Google Scholar 

  • Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol. 2001;67:2982–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husain FM, Ahmad I, Asif M, Tahseen Q. Influence of clove oil on certain quorum-sensing regulated functions and biofilm of Pseudomonas aeruginosa and Aeromonas hydrophila. J Biosci. 2013;38:835–44.

    Article  CAS  PubMed  Google Scholar 

  • Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang BI. Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small. 2008;4:746–50.

    Article  CAS  PubMed  Google Scholar 

  • Inbakandan D, Kumar C, Abraham LS, Kirubagaran R, Venkatesan R, Khan SA. Silver nanoparticles with anti microfouling effect: a study against marine biofilm forming bacteria. Coll Surf B: Biointerfases. 2013;111C:636–43.

    Article  CAS  Google Scholar 

  • Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. Syntesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci. 2014;9:385–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Islam MS, Larimer C, Ojha A, Nettleship I. Antimycobacterial efficacy of silver nanoparticles as deposited on porous membrane filters. Mater Sci Eng C Mater Biol Appl. 2013;33:4575–81.

    Article  CAS  PubMed  Google Scholar 

  • Jensen V, Lons D, Zaoui C, Bredenbruch F, Meissner A, Dieterich G, Münch R, Häussler S. RhlR expression in Pseudomonas aeruginosa is modulated by the Pseudomonas quinolone signal via PhoB-dependent and independent pathways. J Bacteriol. 2006;188:8601–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji G, Beavis RC, Novick RP. Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc Natl Acad Sci U S A. 1995;92:12055–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev. 2012;76:46–65.

    Article  CAS  PubMed  Google Scholar 

  • Kalishwaralal K, Barath Mani Kanh S, Pandian SRK, Deepak V, Gurunathan S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Coll Surf B: Biointerfases. 2010;79:340–4.

    Article  CAS  Google Scholar 

  • de Kevit TR, Iglewski BH. Bacterial quorum sensing in pathogenic relationship. Infect Immun. 2000;68:4839–49.

    Article  Google Scholar 

  • Khan AU. Medicine at nanoscale: a new horizon. Int J Nanomedicine. 2012;7:2997–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiedrowski MR, Horswill AR. New approaches for treating staphylococcal biofilm infections. Ann N Y Acad Sci. 2011;1241:104–21.

    Article  CAS  PubMed  Google Scholar 

  • Lauredale KJ, Boles BR, Cheung AL, Horswill AR. Interconnections between Sigma B, agr, and proteolytic activity in Staphylococcus aureus biofilm maturation. Infect Immun. 2009;77:1623–35.

    Article  CAS  Google Scholar 

  • Lee J-H, Kim Y-G, Cho MH, Lee J. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiol Res. 2014;169:888–96.

    Article  CAS  PubMed  Google Scholar 

  • Leid JG, Wilson CJ, Shirliff ME, Hassett DJ, Parsek MR, Jeffers AK. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol. 2005;175:7512–8.

    Article  CAS  PubMed  Google Scholar 

  • Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol. 2013;11:371–84.

    Article  CAS  PubMed  Google Scholar 

  • Lesic B, Lépine F, Déziel E, Zhang J, Zhang Q, Padfield K, Castonguay MH, Milot S, Stachel S, Tzika AA, Tompkins RG, Rahme LG. Inhibitors of pathogen intercellular signals as selective anti-infective compounds. PLoS Pathog. 2007;3:1229–39.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Leung P, Yao L, Song QW, Newton E. Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect. 2006;62:58–63.

    Article  CAS  PubMed  Google Scholar 

  • Loo CY, Rohanizadeh R, Young PM, Trani D, Cavaliere R, Whitchurch CB, Lee WH. Combination of silver nanoparticles and curcumin nanoparticles for enhanced anti-biofilm activities. J Agric Food Chem. 2016;64:2513–22.

    Article  CAS  PubMed  Google Scholar 

  • Lowy FD. Staphyloccocus aureus infections. N Engl J Med. 1998;339:520–32.

    Article  CAS  PubMed  Google Scholar 

  • Lowy FD. Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest. 2003;111:1265–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutter EI, Purighalla S, Duong J, Storey DG. Lethality and cooperation of Pseudomonas aeruginosa quorum-sensing mutants in Drosophila melanogaster infection models. Microbiology. 2012;158:2125–32.

    Article  CAS  PubMed  Google Scholar 

  • Majumdar S, Pal S. Cross-species communication in bacterial world. J Cell Commun Signal Doi. 2017; doi:10.1007/s12079-017-0383-09.

  • Malone CL, Boles BR, Horswill AR. Biosynthesis of Staphylococcus aureus autoinducing peptides by using the Synechocystis DnaB mini-intein. Appl Environ Microbiol. 2007;73:6036–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mann EE, Rice KC, Boles BR, Endres JL, Ranjit D, Chandramohan L, Tsong LH, Smeltzer MS, Horswill AR, Bagles KW. Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PLoS One. 2009;4:e5822.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Markowska K. Antibacterial activity of silver nanoparticles – effect on the structure and the functions of bacterial cells. (PhD dissertation, in Polish). Poland: University of Warsaw; 2016.

    Google Scholar 

  • Markowska K, Grudniak AM, Wolska KI. Siver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim Pol. 2013;60:523–30.

    PubMed  Google Scholar 

  • Martinez-Gutierrez F, Boegli L, Agostinho A, Sánchez EM, Bach H, Ruiz F, James G. Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling. 2013;29:651–60.

    Article  CAS  PubMed  Google Scholar 

  • Masurkar SA, Chaudhari PR, Shidore VB, Kamble SP. Effect of biologically synthesized silver nanoparticles on Staphylococcus aureus biofilm quenching and prevention of biofilm formation. IET Nanobiotechnol. 2012;6:110–4.

    Article  CAS  PubMed  Google Scholar 

  • Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol. 2001;55:165–99.

    Article  CAS  PubMed  Google Scholar 

  • Mohanty S, Mishra S, Jena P, Jacob B, Sarkar B, Sonawane A. An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomedicine. 2012;8:916–24.

    Article  CAS  PubMed  Google Scholar 

  • Monnet V, Juillard V, Garden R. Peptide conversation in Gram-positive bacteria. Crit Rev Microbiol. 2014;8:1–13.

    Article  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346.

    Article  CAS  PubMed  Google Scholar 

  • Nealson KH, Platt T, Hastinds JW. Cellular control of synthesis and activity of bacterial luminescent system. J Bacteriol. 1970;104:313–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ng WL, Bassler BL. Bacterial quorum sensing network architectures. Annu Rev Genet. 2009;43:197–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novick RP, Geisinger E. Quorum sensing in staphylococci. Annu Rev Genet. 2008;42:541–64.

    Article  CAS  PubMed  Google Scholar 

  • Otto M. Phenol-soluble modulins. Int J Med Microbiol. 2014;304:164–9.

    Article  CAS  PubMed  Google Scholar 

  • Painter KL, Krishna A, Wigneshweraraj S, Edwards AM. What role does the quorum-sensing accessory gene regulator system plays during Staphylococcus aureus bacteremia? Trends Microbiol. 2014;22:676–85.

    Article  CAS  PubMed  Google Scholar 

  • Pal S, Tak YK, Song JM. Does antibacterial activity of silver nanoparticles depend on the shape of the nanoparticles? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73:1712–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papaioannou E, Utari PD, Quax WJ. Choosing an appropriate infection model to study quorum sensing inhibition in Pseudomonas infections. Int J Mol Sci. 2013;14:19309–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park H-J, Park S, Roh J, Kim S, Choi K, Yi J, Kim Y, Yoon J. Biofilm-inactivating activity of silver nanoparticles: a comparison with silver ions. J Ind Eng Chem. 2013;19:614–9.

    Article  CAS  Google Scholar 

  • Passador L, Cook JM, Gambello MJ, Rust L, Iglewski BH. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science. 1993;260:1127–30.

    Article  CAS  PubMed  Google Scholar 

  • Patil MP, Kim GD. Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl Microbiol Biotechnol. 2017;101:79–92.

    Article  CAS  PubMed  Google Scholar 

  • Pauksch L, Hartmann S, Rohnke M, Szalay G, Alt V, Schnettler R, Lips KS. Biocompatibility of silver nanoparticles and silver ions in primary human mesenchymal stem cells and osteoblasts. Acta Biomater. 2014;10:439–49.

    Article  CAS  PubMed  Google Scholar 

  • Pearson JP, Gray KM, Passador L, Tucker KD, Eberhard A, Iglewski BH, Greenberg EP. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci U S A. 1994;91:197–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson JP, Passador L, Iglewski BH, Greenberg EP. A second N-acylhomoseine lactone signal produced by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 1995;92:1490–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev. 2013;65:1803–15.

    Article  CAS  PubMed  Google Scholar 

  • Percival SL, Bower PG, Russell D. Bacterial resistance to silver in wound care. J Hosp Infect. 2005;60:1–7.

    Article  CAS  PubMed  Google Scholar 

  • Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 1999;96:11229–34.

    Google Scholar 

  • Qui R, Pei W, Zhang L, Lin J, Ji G. Identification of the putative staphylococcal AgrB catalytic residues involving the proteolytic cleavage of AgrD to generate autoinducing peptide. J Biol Chem. 2005;280:16695–704.

    Article  CAS  Google Scholar 

  • Raftery TD, Lindler H, McNealy TL. Altered host cell – bacteria interaction due to nanoparticles interaction within a bacterial biofilm. Microb Ecol. 2013;65:496–503.

    Article  CAS  PubMed  Google Scholar 

  • Raftery TD, Kerscher P, Hart AE, Saville SL, Qi B, Kichens CL, Mefford OT, McNeely TL. Discrete nanoparticles induce loss of Legionella pneumophila biofilms from surfaces. Nanotoxicology. 2014;8:477–84.

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27:76–83.

    Article  CAS  PubMed  Google Scholar 

  • Ramasamy M, Lee JH, Lee J. Potent antimicrobial and antibiofilm activities of bacteriogenically synthesized gold-silver nanoparticles against pathogenic bacteria and their physiochemical characterizations. J Biomater Appl. 2016;31:366–78.

    Article  CAS  PubMed  Google Scholar 

  • Rashid MH, Kornberg A. Inorganic phosphate is needed for swimming, swarming, and twitching motilities in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 2000;97:4885–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reuter K, Steinbach A, Helms V. Interfering with bacterial quorum sensing. Perspect Med Chem. 2016;8:1–15.

    Google Scholar 

  • Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet JB. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother. 2008;61:869–76.

    Article  CAS  PubMed  Google Scholar 

  • Sarkisova SA, Lotikar SR, Guragain M, Kubat R, Cloud J, Franklin MJ, Patrauchan MA. A Pseudomonas aeruginosa EF-hand protein, EfhP (PA4107), modulates stress responses and virulence at high calcium concentration. PLoS One. 2014;9:e98985.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sathyanarayanan MB, Balachandranath R, Genji Srinivasulu Y, Kannaiyan SK, Subiadhoss G. The effect of gold and iron-oxide nanoparticles on biofilm forming pathogens. ISRN Microbiol. 2013;2013:e272086.

    Google Scholar 

  • Seil JT, Webster TJ. Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine. 2012;7:2767–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shanker E, Federle MJ. Quorum sensing regulation of competence and bacteriocins in Streptococcus pneumoniae and mutants. Gene. 2017;8(1):pli:E15.

    Article  CAS  Google Scholar 

  • Shopsin B, Eaton C, Wasserman GA, Mathema B, Adhikari RP, Agolory S, Altman DR, Holzman RS, Kreiswirth BN, Novick RP. Mutations in agr do not persist in natural populations of methicillin-resistant Staphylococcus aureus. J Infect Dis. 2010;202:1593–9.

    Google Scholar 

  • Sifri CD, Begun J, Ausubel FM, Calderwood SB. Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis. Infect Immun. 2003;71:2208–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh PK, Schaefter AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature. 2000;407:762–4.

    Article  CAS  PubMed  Google Scholar 

  • Singh PK, Parsek MR, Greenberg EP, Welsh MJ. A component of innate immunity prevents bacterial biofilm development. Nature. 2002;417:552–5.

    Article  CAS  PubMed  Google Scholar 

  • Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent; a case study in E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275:177–82.

    Article  CAS  PubMed  Google Scholar 

  • Tan MW, Mahajan-Mikols S, Ausubel FM. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model bacterial pathogenesis. Proc Natl Acad Sci U S A. 1999;96:715–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Telford G, Wheeler D, Williams P, Tomkins PT, Appleby P, Sewell H, Stewart GS, Bycroft BW, Pritchard DI. The Pseudomonas aeruginosa quorum-sensing signal molecule n-(3-oxododecanoyl)-L-homoserine lactone has immunomodulatory activity. Infect Immun. 1998;66:36–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayakumar S, Vaseenharan B, Malaikozhundan B, Gopi N, Ekambaram P, Velusamy P, Murugan K, Benelli G, Suresh Kumar R, Suryanarayanamoorthy M. Therapeutic effects of gold nanoparticles synthesized using Musa paradisiacal peel extract against multiple antibiotic resistant Enterococcus faecalis biofilms and human lung cancer cells (A549). Microb Pathog. 2017;102:173–83.

    Article  CAS  PubMed  Google Scholar 

  • Vijayan SR, Santhiyagu P, Singamuthu M, Kumari Ahila N, Jayaraman R, Ethiraj K. Synthesis and characterization of silver and gold nanoparticles using aqueous extract of seaweed Turbinaria conoides, and their antimicrofouling activity. Sci World J. 2014;2014:e938272.

    Google Scholar 

  • Wade DS, Calfee MW, Rocha ER, Ling EA, Engstrom E, Coleman JP, Pesci EC. Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J Bacteriol. 2005;187:4372–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol. 2003;185:2080–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev. 2001;25:365–404.

    Article  CAS  PubMed  Google Scholar 

  • Wolska KI, Grudniak AM, Rudnicka Z, Markowska K. Genetic control of bacterial biofilms. J Appl Genet. 2016a;57:225–38.

    Article  CAS  PubMed  Google Scholar 

  • Wolska KI, Grudniak AM, Markowska K. Inhibitors of bacterial quorum sensing systems and their role as potential therapeutics. In Polish. Postepy Mikrobiol. 2016b;55:300–8.

    Google Scholar 

  • Wright JS, Jin R, Novick RP. Transient interference with staphylococcal quorum sensing blocks abscesses formation. Proc Natl Acad Sci U S A. 2005;102:1691–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yardwood JM, Schlievert PM. Quorum sensing in Staphylococcus infections. J Clin Invest. 2003;112:1620–5.

    Article  CAS  Google Scholar 

  • Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications and thertapeutic approaches. Int J Mol Sci. 2016;17(9):1534. pli:E1534

    Article  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krystyna I. Wolska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wolska, K.I., Grudniak, A.M., Markowska, K. (2017). Inhibition of Bacterial Quorum Sensing Systems by Metal Nanoparticles. In: Rai, Ph.D, M., Shegokar, Ph.D, R. (eds) Metal Nanoparticles in Pharma. Springer, Cham. https://doi.org/10.1007/978-3-319-63790-7_7

Download citation

Publish with us

Policies and ethics