Response Surface Methodology Optimization of Mono-dispersed MgO Nanoparticles Fabricated by Ultrasonic-Assisted Sol–Gel Method for Outstanding Antimicrobial and Antibiofilm Activities


Magnesium oxide (MgO) nanoparticles are one of the highly significant compounds in construction. The novelty concentrated on using sol–gel technique coupled with ultrasonication for synthesis of MgO nanoparticles to prevent the agglomeration and its effect on the size was investigated. The synthesized samples were characterized by TGA, DSC, XRD, FTIR, SEM, EDX mapping, DLS, and HRTEM. Antimicrobial and antibiofilm activities of MgO nanoparticles were investigated against multidrug-resistant microbes causing-urinary tract infection (UTI). TGA, XRD, and FTIR characterization were used to identify the calcination temperature, characterization peaks, and functional groups of MgO nanoparticles, respectively. DLS technique confirmed the particle size distribution which found to be 21.04 nm. HRTEM and SEM/EDX mapping showed that MgO nanoparticles are pure, spherical and the average particle size is 19.2 nm. MgO nanoparticles showed a promising antimicrobial effect against all UTI-causing pathogens. It showed a prominent antimicrobial capability against Staphylococcus aureus, Escherichia coli and Candida albicans by 19.3 mm, 16.1 mm and 15.2 mm ZOI, respectively. Additionally, they showed improved biofilm inhibition as 95.65%, 84.23%, and 76.85% against C. albicans, E. coli and S. aureus, respectively. Therefore, due to these outstanding properties, this study could give insights for solving serious industrial, pharmaceutical and medical challenges throughout the utilization of new nanoparticle-based approach.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    J. T. Seil and T. J. Webster (2012). Antimicrobial applications of nanotechnology: methods and literature. Int. J. Nanomed.7, 2767.

    CAS  Google Scholar 

  2. 2.

    A. El-Batal, et al. (2014). Synthesis of silver nanoparticles and incorporation with certain antibiotic using gamma irradiation. Br. J. Pharm. Res.4, (11), 1341.

    Article  Google Scholar 

  3. 3.

    A. F. El-Baz, et al. (2016). Extracellular biosynthesis of anti-Candida silver nanoparticles using Monascus purpureus. J. Basic Microbiol.56, (5), 531–540.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    K. Karthik, et al. (2018). Facile microwave-assisted green synthesis of NiO nanoparticles from Andrographis paniculata leaf extract and evaluation of their photocatalytic and anticancer activities. Mol. Cryst. Liq. Cryst.673, (1), 70–80.

    CAS  Article  Google Scholar 

  5. 5.

    G. S. El-Sayyad, et al. (2019). Facile biosynthesis of tellurium dioxide nanoparticles by Streptomyces cyaneus melanin pigment and gamma radiation for repressing some Aspergillus pathogens and bacterial wound cultures. J. Clust. Sci.

    Article  Google Scholar 

  6. 6.

    M. Abd Elkodous, et al. (2019). Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids Surf B: Biointerfaces180, 411–428.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    M. Abd Elkodous, et al. (2019). Engineered nanomaterials as potential candidates for HIV treatment: between opportunities and challenges. J. Clust. Sci.30, (3), 531–540.

    CAS  Article  Google Scholar 

  8. 8.

    A. Kumar and J. Kumar (2008). On the synthesis and optical absorption studies of nano-size magnesium oxide powder. J. Phys. Chem. Solids69, (11), 2764–2772.

    CAS  Article  Google Scholar 

  9. 9.

    S. Peng, et al. (2015). Influence of functionalized MgO nanoparticles on electrical properties of polyethylene nanocomposites. IEEE Trans. Dielectr. Electr. Insul.22, (3), 1512–1519.

    CAS  Article  Google Scholar 

  10. 10.

    S. Suresh (2014). Investigations on synthesis, structural and electrical properties of MgO nanoparticles by sol–gel method. J. Ovonic Res.10, (6), 205–210.

    Google Scholar 

  11. 11.

    A. I. El-Batal, et al. (2019). Penicillium chrysogenum-mediated mycogenic synthesis of copper oxide nanoparticles using gamma rays for in vitro antimicrobial activity against some plant pathogens. J. Clust. Sci.

    Article  Google Scholar 

  12. 12.

    F. J. Heiligtag and M. Niederberger (2013). The fascinating world of nanoparticle research. Mater. Today16, (7–8), 262–271.

    CAS  Article  Google Scholar 

  13. 13.

    M. Mastuli, et al. (2014). Growth mechanisms of MgO nanocrystals via a sol–gel synthesis using different complexing agents. Nanoscale Res. Lett.9, (1), 1–9.

    CAS  Article  Google Scholar 

  14. 14.

    J. Xie, et al. (2017). Influence of moisture absorption on the synthesis and properties of Y2O3–MgO nanocomposites. Ceram. Int.43, (1), 40–44.

    CAS  Article  Google Scholar 

  15. 15.

    M. Afrand (2017). Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation. Appl. Thermal Eng.110, 1111–1119.

    CAS  Article  Google Scholar 

  16. 16.

    G. Venugopal, et al. (2015). Structural and mechanical properties of MgO-poly (vinyl alcohol) nanocomposite film. Adv. Sci. Eng. Med.7, (6), 457–464.

    CAS  Article  Google Scholar 

  17. 17.

    H. Guan, et al. (2007). Synthesis of high surface area nanometer magnesia by solid-state chemical reaction. Front. Chem. China2, (2), 204–208.

    Article  Google Scholar 

  18. 18.

    G. I. Almerindo, et al. (2011). Magnesium oxide prepared via metal-chitosan complexation method: application as catalyst for transesterification of soybean oil and catalyst deactivation studies. J. Power Sources196, (19), 8057–8063.

    CAS  Article  Google Scholar 

  19. 19.

    R. Al-Gaashani, et al. (2012). Investigation of the optical properties of Mg(OH)2 and MgO nanostructures obtained by microwave-assisted methods. J. Alloys Compd.521, 71–76.

    CAS  Article  Google Scholar 

  20. 20.

    H. Mirzaei and A. Davoodnia (2012). Microwave assisted sol–gel synthesis of MgO nanoparticles and their catalytic activity in the synthesis of hantzsch 1, 4-dihydropyridines. Chin. J. Catal.33, (9), 1502–1507.

    CAS  Article  Google Scholar 

  21. 21.

    K. Karthik, et al. (2019). Fabrication of MgO nanostructures and its efficient photocatalytic, antibacterial and anticancer performance. J. Photochem. Photobiol. B190, 8–20.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    K. Karthik, et al. (2019). Ultrasonic-assisted CdO–MgO nanocomposite for multifunctional applications. Mater. Technol.34, (7), 403–414.

    CAS  Article  Google Scholar 

  23. 23.

    K. Karthik, et al. (2019). Microwave-assisted ZrO2 nanoparticles and its photocatalytic and antibacterial studies. J. Clust. Sci.30, (2), 311–318.

    CAS  Article  Google Scholar 

  24. 24.

    A. Pugazhendhi, et al. (2019). Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. J. Photochem. Photobiol. B190, 86–97.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    C. Martinez-Boubeta, et al. (2010). Self-assembled multifunctional Fe/MgO nanospheres for magnetic resonance imaging and hyperthermia. Nanomedicine6, (2), 362–370.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    D.-R. Di, et al. (2012). A new nano-cryosurgical modality for tumor treatment using biodegradable MgO nanoparticles. Nanomedicine8, (8), 1233–1241.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    K. Karthik, et al. (2017). Microwave assisted green synthesis of MgO nanorods and their antibacterial and anti-breast cancer activities. Mater. Lett.206, 217–220.

    CAS  Article  Google Scholar 

  28. 28.

    J. Jeevanandam, Y. S. Chan, and M. K. Danquah (2017). Calcination-dependent morphology transformation of sol–gel-synthesized MgO nanoparticles. ChemistrySelect2, (32), 10393–10404.

    CAS  Article  Google Scholar 

  29. 29.

    G. S. El-Sayyad, F. M. Mosallam, and A. I. El-Batal (2018). One-pot green synthesis of magnesium oxide nanoparticles using Penicillium chrysogenum melanin pigment and gamma rays with antimicrobial activity against multidrug-resistant microbes. Adv. Powder Technol.29, (11), 2616–2625.

    CAS  Article  Google Scholar 

  30. 30.

    V. S. Nagineni, et al. (2005). Microreactors for syngas conversion to higher alkanes: characterization of sol–gel-encapsulated nanoscale Fe–Co catalysts in the microchannels. Ind. Eng. Chem. Res.44, (15), 5602–5607.

    CAS  Article  Google Scholar 

  31. 31.

    S. V. Gaponenko, V. Gurin, and V. E. E. Borisenko Physics, Chemistry, and Application of Nanostructures: Reviews and Short Notes to Nanomeeting 2003: Minsk, Belarus, 20–23 May 2003 (World Scientific, Singapore, 2003).

    Google Scholar 

  32. 32.

    A. Ashour, et al. (2018). Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology40, 141–151.

    CAS  Article  Google Scholar 

  33. 33.

    M. I. A. Abdel Maksoud, et al. (2019). Incorporation of Mn2+ into cobalt ferrite via sol–gel method: insights on induced changes in the structural, thermal, dielectric, and magnetic properties. J. Sol–Gel Sci. Technol.90, (3), 631–642.

    CAS  Article  Google Scholar 

  34. 34.

    M. Yoshimura and S. Sōmiya (1999). Hydrothermal synthesis of crystallized nano-particles of rare earth-doped zirconia and hafnia. Mater. Chem. Phys.61, (1), 1–8.

    CAS  Article  Google Scholar 

  35. 35.

    M. I. A. Abdel Maksoud, et al. (2018). Synthesis and characterization of metals-substituted cobalt ferrite [Mx Co(1 − x) Fe2O4; (M = Zn, Cu and Mn; x = 0 and 0.5)] nanoparticles as antimicrobial agents and sensors for anagrelide determination in biological samples. Mater. Sci. Eng. C92, 644–656.

    CAS  Article  Google Scholar 

  36. 36.

    T. Athar, A. Hakeem, and W. Ahmed (2012). Synthesis of MgO nanopowder via non aqueous sol–gel method. Adv. Sci. Lett.7, 27–29.

    CAS  Article  Google Scholar 

  37. 37.

    M. I. A. A. Maksoud, et al. (2019). Tunable structures of copper substituted cobalt nanoferrites with prospective electrical and magnetic applications. J. Mater. Sci.30, (5), 4908–4919.

    CAS  Google Scholar 

  38. 38.

    Z. X. Tang and B. F. Lv (2014). MgO nanoparticles as antibacterial agent: preparation and activity. Braz. J. Chem. Eng.31, (3), 591–601.

    Article  Google Scholar 

  39. 39.

    Z. X. Tang, et al. (2012). Nanosize MgO as antibacterial agent: preparation and characteristics. Braz. J. Chem. Eng.29, (4), 775–781.

    Article  Google Scholar 

  40. 40.

    K. Y. Sara Lee, et al. (2012). Effect of ultrasonication on synthesis of forsterite ceramics. Adv. Mater. Res.576, 252–255.

    Article  CAS  Google Scholar 

  41. 41.

    Hielscher, K. Ultrasonic Milling and Dispersing Technology for Nano-Particles. in MRS Proceedings. 2012. Cambridge Univ Press.

  42. 42.

    K. Karthik, et al. (2019). Ultrasound-assisted synthesis of V2O5 nanoparticles for photocatalytic and antibacterial studies. Mater. Res. Innov..

    Article  Google Scholar 

  43. 43.

    A. Kaboorani, B. Riedl, and P. Blanchet (2013). Ultrasonication technique: a method for dispersing nanoclay in wood adhesives. J. Nanomater.2013, 3.

    Article  CAS  Google Scholar 

  44. 44.

    H. Guo, et al. (2005). Effect of heat-treatment temperature on the luminescent properties of Lu2O3: Eu film prepared by Pechini sol–gel method. Appl. Surf. Sci.243, (1), 245–250.

    CAS  Article  Google Scholar 

  45. 45.

    A. I. El-Batal, et al. (2017). Response surface methodology optimization of melanin production by Streptomyces cyaneus and synthesis of copper oxide nanoparticles using gamma radiation. J. Clust. Sci.28, (3), 1083–1112.

    CAS  Article  Google Scholar 

  46. 46.

    M. I. A. A. Maksoud, et al. (2019). Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Microb. Pathog.127, 144–158.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    A. I. El-Batal, et al. (2019). Antibiofilm and antimicrobial activities of silver boron nanoparticles synthesized by PVP polymer and gamma rays against urinary tract pathogens. J. Clust. Sci.30, (4), 947–964.

    CAS  Article  Google Scholar 

  48. 48.

    A. I. El-Batal, F. M. Mosallam, and G. S. El-Sayyad (2018). Synthesis of metallic silver nanoparticles by fluconazole drug and gamma rays to inhibit the growth of multidrug-resistant microbes. J. Clust. Sci.29, (6), 1003–1015.

    CAS  Article  Google Scholar 

  49. 49.

    A. I. El-Batal, et al. (2018). Biogenic synthesis of copper nanoparticles by natural polysaccharides and Pleurotus ostreatus fermented fenugreek using gamma rays with antioxidant and antimicrobial potential towards some wound pathogens. Microb. Pathog.118, 159–169.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    A. Baraka, et al. (2017). Synthesis of silver nanoparticles using natural pigments extracted from Alfalfa leaves and its use for antimicrobial activity. Chem. Pap.71, (11), 2271–2281.

    CAS  Article  Google Scholar 

  51. 51.

    G. D. Christensen, et al. (1982). Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect. Immun.37, (1), 318–326.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    M. A. Ansari, et al. (2014). Antibiofilm efficacy of silver nanoparticles against biofilm of extended spectrum β-lactamase isolates of Escherichia coli and Klebsiella pneumoniae. Appl. Nanosci.4, (7), 859–868.

    CAS  Article  Google Scholar 

  53. 53.

    S. H. Abidi, et al. (2013). Drug resistance profile and biofilm forming potential of Pseudomonas aeruginosa isolated from contact lenses in Karachi-Pakistan. BMC Ophthalmol.13, (1), 57.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  54. 54.

    T. Mathur, et al. (2006). Detection of biofilm formation among the clinical isolates of staphylococci: an evaluation of three different screening methods. Indian J. Med. Microbiol.24, (1), 25.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    M. A. Elkodous, et al. (2019). Layer-by-layer preparation and characterization of recyclable nanocomposite (CoxNi 1 − x Fe2O4; X = 0.9/SiO2/TiO2). J. Mater. Sci.30, (9), 8312–8328.

    CAS  Google Scholar 

  56. 56.

    B. Doreswamy, et al. (2005). A novel three-dimensional polymeric structure of crystalline neodymium malonate hydrate. Mater. Lett.59, (10), 1206–1213.

    CAS  Article  Google Scholar 

  57. 57.

    Jaison, J., S. Balakumar, and Y. Chan. SolGel synthesis and characterization of magnesium peroxide nanoparticles. in IOP Conference Series: Materials Science and Engineering. 2015. IOP Publishing.

  58. 58.

    M. S. Mastuli, et al. (2012). Effects of cationic surfactant in sol–gel synthesis of nano sized magnesium oxide. APCBEE Procedia3, 93–98.

    CAS  Article  Google Scholar 

  59. 59.

    G. Gao and L. Xiang (2010). Emulsion-phase synthesis of honeycomb-like Mg5(OH)2 (CO3)4·4H2O micro-spheres and subsequent decomposition to MgO. J. Alloys Compd.495, (1), 242–246.

    CAS  Article  Google Scholar 

  60. 60.

    International Standard ISO 13321, Methods for Determination of Particle Size Distribution Part 8: Photon Correlation Spectroscopy. 1996, International Organization for Standardization (ISO).

  61. 61.

    International Standard ISO 22412, Particle Size Analysis—Dynamic Light Scattering. 2008, International Organization for Standardization (ISO).

  62. 62.

    J. L. Ford (1993). Particle size analysis in pharmaceutics and other industries. Theory and practice. J. Pharm. Pharmacol.45, (11), 1015.

    Article  Google Scholar 

  63. 63.

    M. Mourabet, et al. (2014). Use of response surface methodology for optimization of fluoride adsorption in an aqueous solution by Brushite. Arab. J. Chem.10, S3292–S3302.

    Article  CAS  Google Scholar 

  64. 64.

    J. Segurola, et al. (1999). Design of eutectic photoinitiator blends for UV/visible curable acrylated printing inks and coatings. Prog. Org. Coat.37, (1–2), 23–37.

    CAS  Article  Google Scholar 

  65. 65.

    P. Kanmani, et al. (2012). The use of response surface methodology as a statistical tool for media optimization in lipase production from the dairy effluent isolate Fusarium solani. ISRN Biotechnol.2013, 528708.

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    L. Reddy, et al. (2008). Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett–Burman and response surface methodological approaches. Bioresour. Technol.99, (7), 2242–2249.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    N. Sharma, R. Khanna, and R. D. Gupta (2015). WEDM process variables investigation for HSLA by response surface methodology and genetic algorithm. Eng. Sci. Technol. Int. J.18, (2), 171–177.

    Article  Google Scholar 

  68. 68.

    M. R. Waghulde and J. B. Naik (2016). Poly-e-caprolactone-loaded miglitol microspheres for the treatment of type-2 diabetes mellitus using the response surface methodology. J. Taibah Univ. Med. Sci.11, (4), 364–373.

    Google Scholar 

  69. 69.

    M. Ashengroph, I. Nahvi, and J. Amini (2013). Application of taguchi design and response surface methodology for improving conversion of isoeugenol into vanillin by resting cells of Psychrobacter sp. CSW4. Iran. J. Pharm. Res.12, (3), 411–421.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    R. V. Muralidhar, et al. (2001). A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources. Biochem. Eng. J.9, (1), 17–23.

    CAS  Article  Google Scholar 

  71. 71.

    J. L. L. García and M. D. L. de Castro Acceleration and Automation of Solid Sample Treatment (Elsevier Science, Amsterdam, 2002).

    Google Scholar 

  72. 72.

    H. Osman and M. Khairy (2013). Optimization of polyester printing with disperse dye nanoparticles. Indian J. Fibre Text. Res.38, 202–206.

    CAS  Google Scholar 

  73. 73.

    H.-Y. Kim, et al. (2013). Effect of ultrasonic treatments on nanoparticle preparation of acid-hydrolyzed waxy maize starch. Carbohydr. Polym.93, (2), 582–588.

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    D. Zhou, S. W. Bennett, and A. A. Keller (2012). Increased mobility of metal oxide nanoparticles due to photo and thermal induced disagglomeration. PLoS ONE7, (5), e37363.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Z.-X. Tang and L.-E. Shi (2008). Preparation of nano-MgO using ultrasonic method and its characteristics. Eclética Química33, 15–20.

    CAS  Article  Google Scholar 

  76. 76.

    O. Masala and R. Seshadri (2004). Synthesis routes for large volumes of nanoparticles. Annu. Rev. Mater. Res.34, (1), 41–81.

    CAS  Article  Google Scholar 

  77. 77.

    J. Taurozzi, V. Hackley, and M. Wiesner (2012). Preparation of nanoparticle dispersions from powdered material using ultrasonic disruption. NIST Spec. Publ.1200, 2.

    Google Scholar 

  78. 78.

    W. A. Twej (2009). Temperature influence on the gelation process of tetraethylorthosilicate using sol–gel technique. Iraqi J. Sci.50, (1), 43–49.

    Google Scholar 

  79. 79.

    C. Milea, C. Bogatu, and A. Duta (2011). The influence of parameters in silica sol–gel process. Bull. Transilvania Univ. Brasov4, 53.

    Google Scholar 

  80. 80.

    P.-H. Li and B.-H. Chiang (2012). Process optimization and stability of d-limonene-in-water nanoemulsions prepared by ultrasonic emulsification using response surface methodology. Ultrason. Sonochem.19, (1), 192–197.

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    M. L. Tsai, S. W. Bai, and R. H. Chen (2008). Cavitation effects versus stretch effects resulted in different size and polydispersity of ionotropic gelation chitosan–sodium tripolyphosphate nanoparticle. Carbohydr. Polym.71, (3), 448–457.

    CAS  Article  Google Scholar 

  82. 82.

    E. S. K. Tang, M. Huang, and L. Y. Lim (2003). Ultrasonication of chitosan and chitosan nanoparticles. Int. J. Pharm.265, (1–2), 103–114.

    CAS  PubMed  Article  Google Scholar 

  83. 83.

    J. S. Taurozzi, V. A. Hackley, and M. R. Wiesner (2011). Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment–issues and recommendations. Nanotoxicology5, (4), 711–729.

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    L. Kumar, et al. (2015). Full factorial design for optimization, development and validation of HPLC method to determine valsartan in nanoparticles. Saudi Pharm. J.23, (5), 549–555.

    PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    A. I. El-Batal, et al. (2019). Potential nematicidal properties of silver boron nanoparticles: synthesis, characterization, in vitro and in vivo root-knot nematode (Meloidogyne incognita) treatments. J. Clust. Sci.30, (3), 687–705.

    CAS  Article  Google Scholar 

  86. 86.

    Powder Diffraction File, 71-1176. International Centre for Diffraction Data. Newton Square, PA, 2000.

  87. 87.

    R. Wongmaneerung, R. Yimnirun, and S. Ananta (2009). Effect of magnesium niobate precursors on phase formation, microstructure and dielectric properties of perovskite lead magnesium niobate ceramics. J. Alloys Compd.477, (1–2), 805–810.

    CAS  Article  Google Scholar 

  88. 88.

    M. A. Shah (2010). Preparation of MgO nanoparticles with water. Afr. Rev. Phys.4, 3.

    Google Scholar 

  89. 89.

    S. Demirci, et al. (2015). Synthesis and comparison of the photocatalytic activities of flame spray pyrolysis and sol–gel derived magnesium oxide nano-scale particles. Mater. Sci. Semicond. Process.34, 154–161.

    CAS  Article  Google Scholar 

  90. 90.

    G. Marina, et al. (2017). Problems of magnesium oxide wallboard usage in construction. IOP Conf. Ser.90, (1), 012103.

    Google Scholar 

  91. 91.

    A. M. Pourrahimi, et al. (2016). Polyethylene nanocomposites for the next generation of ultralow-transmission-loss HVDC cables: insulation containing moisture-resistant MgO nanoparticles. ACS Appl. Mater. Interfaces8, (23), 14824–14835.

    PubMed  Article  CAS  Google Scholar 

  92. 92.

    M. S. Attia, et al. (2019). Spirulina platensis-polysaccharides promoted green silver nanoparticles production using gamma radiation to suppress the expansion of pear fire blight-producing Erwinia amylovora. J. Clust. Sci.30, (4), 919–935.

    CAS  Article  Google Scholar 

  93. 93.

    Hamid, H., Infrared Spectrometry 2007: New Delhi. p. 26.

  94. 94.

    F. M. Mosallam, et al. (2018). Biomolecules-mediated synthesis of selenium nanoparticles using Aspergillus oryzae fermented Lupin extract and gamma radiation for hindering the growth of some multidrug-resistant bacteria and pathogenic fungi. Microb. Pathog.122, 108–116.

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    J. Mohan Organic Spectroscopy: Principles and Applications (Alpha Science, Oxford, 2004).

    Google Scholar 

  96. 96.

    Merlic, C.A. and B.C. Fam. Table of IR Absorptions. 2000 [cited 2016 April 17]; Available from:

  97. 97.

    K. Nakanishi and P. H. Solomon Infrared Absorption Spectroscopy (Emerson-Adams Press, Boca Raton, 1977).

    Google Scholar 

  98. 98.

    C. Ashok, R. K. Venkateswara, and Chakra C. Shilpa (2015). Synthesis and characterization of MgO/TiO2 nanocomposites. J. Nanomed. Nanotechnol.6, (329), 2.

    Google Scholar 

  99. 99.

    L.-Z. Pei, et al. (2010). Low temperature synthesis of magnesium oxide and spinel powders by a sol–gel process. Mater. Res.13, (3), 339–343.

    CAS  Article  Google Scholar 

  100. 100.

    Y.-S. Heo, et al. (2011). Construction application of fibre/mesh method for protecting concrete columns in fire. Constr. Build. Mater.25, (6), 2928–2938.

    Article  Google Scholar 

  101. 101.

    L. F. Vilches, et al. (2003). Recycling potential of coal fly ash and titanium waste as new fireproof products. Chem. Eng. J.95, (1–3), 155–161.

    CAS  Article  Google Scholar 

  102. 102.

    T. Jin and Y. He (2011). Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J. Nanoparticle Res.13, (12), 6877–6885.

    CAS  Article  Google Scholar 

  103. 103.

    Y. H. Leung, et al. (2014). Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small10, (6), 1171–1183.

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    K. Yamada, et al. (2000). Effects of the chemical structure on the properties of polycarboxylate-type superplasticizer. Cement Concr. Res.30, (2), 197–207.

    CAS  Article  Google Scholar 

  105. 105.

    P. Tian, et al. (2013). Synthesis of porous hierarchical MgO and its superb adsorption properties. ACS Appl. Mater. Interfaces5, (23), 12411–12418.

    CAS  PubMed  Article  Google Scholar 

  106. 106.

    T. Ungár, et al. (2005). Correlation between subgrains and coherently scattering domains. Powder Diffr.20, (04), 366–375.

    Article  CAS  Google Scholar 

  107. 107.

    G. Schmid Nanoparticles: From Theory to Application (Wiley, New York, 2011).

    Google Scholar 

  108. 108.

    K. Pal, M. A. Elkodous, and M. M. Mohan (2018). CdS nanowires encapsulated liquid crystal in-plane switching of LCD device. J. Mater. Sci.29, (12), 10301–10310.

    CAS  Google Scholar 

  109. 109.

    M. A. El-Ghazaly, et al. (2016). Anti-inflammatory effect of selenium nanoparticles on the inflammation induced in irradiated rats. Can. J. Physiol. Pharmacol.95, (2), 101–110.

    PubMed  Article  CAS  Google Scholar 

  110. 110.

    A. El-Batal, et al. (2016). Impact of silver and selenium nanoparticles synthesized by gamma irradiation and their physiological response on early blight disease of potato. J. Chem. Pharm. Res.8, (4), 934–951.

    CAS  Google Scholar 

  111. 111.

    A. I. El-Batal, et al. (2017). Melanin-gamma rays assistants for bismuth oxide nanoparticles synthesis at room temperature for enhancing antimicrobial, and photocatalytic activity. J. Photochem. Photobiol. B173, 120–139.

    CAS  PubMed  Article  Google Scholar 

  112. 112.

    K. Karthik, et al. (2019). Multifunctional applications of microwave-assisted biogenic TiO2 nanoparticles. J. Clust. Sci.30, (4), 965–972.

    CAS  Article  Google Scholar 

  113. 113.

    S. Pal, Y. K. Tak, and J. M. Song (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol.73, (6), 1712–1720.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. 114.

    Y. He, et al. (2016). Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. J. Nanobiotechnol.14, (1), 54.

    Article  CAS  Google Scholar 

  115. 115.

    M. Sundrarajan, J. Suresh, and R. R. Gandhi (2012). A comparative study on antibacterial properties of MgO nanoparticles prepared under different calcination temperature. Digest J. Nanomater. Biostruct.7, (3), 983–989.

    Google Scholar 

  116. 116.

    C. Ashajyothi, et al. (2016). Antibiofilm activity of biogenic copper and zinc oxide nanoparticles-antimicrobials collegiate against multiple drug resistant bacteria: a nanoscale approach. J. Nanostruct. Chem.6, (4), 329–341.

    CAS  Article  Google Scholar 

  117. 117.

    H.-J. Park, et al. (2013). Removal characteristics of engineered nanoparticles by activated sludge. Chemosphere92, (5), 524–528.

    CAS  PubMed  Article  Google Scholar 

  118. 118.

    A. I. El-Batal, et al. (2018). Antimicrobial, antioxidant and anticancer activities of zinc nanoparticles prepared by natural polysaccharides and gamma radiation. Int. J. Biol. Macromol.107, 2298–2311.

    CAS  PubMed  Article  Google Scholar 

  119. 119.

    A. El-Batal, et al. (2013). Gamma irradiation induces silver nanoparticles synthesis by Monascus purpureus. J. Chem. Pharm. Res.5, (8), 1–15.

    Google Scholar 

  120. 120.

    N. Mazaheri, A. Karimi, and H. Salavati (2019). In vivo toxicity investigation of magnesium oxide nanoparticles in rat for environmental and biomedical applications. Iran. J. Biotechnol.17, (1), 1–9.

    Article  Google Scholar 

Download references


All the authors want to acknowledge the support of Department of Chemical Engineering, Faculty of Engineering and Sciences in the experiments and completion of this manuscript. The authors would like to thank the PI of Nanotechnology Research Unit (Prof. Dr. Ahmed I. El-Batal), Drug Microbiology Lab., Drug Radiation Research Department, NCRRT, Egypt, for financing and supporting this study under the project “Nutraceuticals and Functional Foods Production by using Nano/Biotechnological and Irradiation Processes”. Also, the authors would like to thank Director of Research, Nile University, Egypt and Prof. Mohamed Gobara (Military Technical College, Egyptian Armed Forces), and Zeiss microscope team in Cairo, Egypt for their invaluable advice during this study.


Not applicable.

Author information



Corresponding authors

Correspondence to Kaushik Pal or Gharieb S. El-Sayyad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human Participation and/or Animals

This article does not contain any studies with human and/or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wong, C.W., Chan, Y.S., Jeevanandam, J. et al. Response Surface Methodology Optimization of Mono-dispersed MgO Nanoparticles Fabricated by Ultrasonic-Assisted Sol–Gel Method for Outstanding Antimicrobial and Antibiofilm Activities. J Clust Sci 31, 367–389 (2020).

Download citation


  • MgO nanoparticles
  • Sol–gel synthesis
  • Ultrasound
  • Antibiofilm potential
  • Antimicrobial activity