Skip to main content
Log in

Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The antibacterial activities of magnesium oxide nanoparticles (MgO NP) alone or in combination with other antimicrobials (nisin and ZnO NP) against Escherichia coli O157:H7 and Salmonella Stanley were investigated. The results show that MgO NP have strong bactericidal activity against the pathogens, achieving more than 7 log reductions in bacterial counts. The antibacterial activity of MgO NP increased as the concentrations of MgO increased. A synergistic effect of MgO in combination with nisin was observed as well. However, the addition of ZnO NP to MgO NP did not enhance the antibacterial activity of MgO against both pathogens. Scanning electron microscopy was used to characterize the morphological changes of E. coli O157:H7 before and after antimicrobial treatments. It was revealed that MgO NP treatments distort and damage the cell membrane, resulting in a leakage of intracellular contents and eventually the death of bacterial cells. These results suggest that MgO NP alone or in combination with nisin could potentially be used as an effective antibacterial agent to enhance food safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Holy M, Al-Qadiri H, Lin M, Rasco B (2006) Inhibition of Listeria innocua in hummus by a combination of nisin and citric acid. J Food Protect 69(6):1322–1327

    CAS  Google Scholar 

  • Boziaris IS, Adams MR (2001) Temperature shock, injury and transient sensitivity to nisin in Gram-negatives. J Appl Microbiol 91:715–724

    Article  CAS  Google Scholar 

  • Chandrapati S, O’Sullivan DJ (1998) Procedure for quantifiable assessment of nutritional parameters influencing Nisin production by Lactococcus lactis subsp. lactis. J Biotechnol 63:229–233

    Article  CAS  Google Scholar 

  • Dawson PL, Carl GD, Acton JC, Han IY (2002) Effect of lauric acid and nisin-impregnated soy-based films on the growth of Listeria monocytogenes on turkey bologna. Poultry Sci 81:721–726

    CAS  Google Scholar 

  • Fang TJ, Tsai HC (2003) Growth patterns of Escherichia coli O157:H7 in ground beef treated with nisin, chelators organic acids and their combinations immobilized in calcium alginate gels. Food Microbiol 20:243–253

    Article  CAS  Google Scholar 

  • Food and Drug Administration (FDA) (1988) Nisin preparation: affirmation of GRAS status as a direct human food ingredient. Federal Register 53:11247–11251

    Google Scholar 

  • Food and Nutrition Board (1997) Dietary references intakes: calcium, phosphorus, magnesium, vitamin D and fluoride. In: Institute of Medicine (ed) Uses of dietary intakes, Food and Nutrition Board, vol 7. National Academy Press, Washington DC

    Google Scholar 

  • Fu G, Vary PS, Lin CT (2005) Anatase TiO2 nanocomposites for antimicrobial coating. J Phys Chem B 109:8889–8898

    Article  CAS  Google Scholar 

  • Hauben KJA, Wuytack EY, Scootjens CCF, Michiels CW (1996) High pressure transient sensitization of E. coli to lysozyme and nisin by disruption of outer membrane permeability. J Food Prot 59:350–355

    CAS  Google Scholar 

  • Henning S, Metz R, Hammes WP (1986) Studies on the mode of action of nisin. Int J Food Microbiol 3:121–134

    Article  CAS  Google Scholar 

  • Hewitt CJ, Bellara ST, Andreani A, Nebe-von-Caron G, Mcfarlane CM (2001) An evaluation of the antibacterial action of ceramic powder slurries using multiparameter flow cytometry. Biotechnol Lett 23:667–675

    Article  CAS  Google Scholar 

  • Huang Z, Maness PC, Blakee DM, Wolfrum EJ, Smoliski SL, Jacoby WA (2000) Bacterial mode of titanium dioxide photocatalysis. J Photochem Photobiol A: Chem 130:163–170

    Article  CAS  Google Scholar 

  • Huang L, Li D, Lin Y, Evans DG, Duan X (2005) Influence of nano-MgO particle size on bactericidal action against Bacillus subtilis var. niger. Chin Sci Bull 50(6):514–519

    CAS  Google Scholar 

  • Jin T (2010) Inactivation of Listeria monocytogenes in skim milk and liquid egg white by antimicrobial bottle coating with polylactic acid and nisin. J Food Sci 75(2):M83–M88

    Article  CAS  Google Scholar 

  • Jin T, Gurtler J (2011) Inactivation of Salmonella in liquid egg albumen by antimicrobial bottle coatings infused with allyl isothiocyanate, nisin and zinc oxide nanoparticles. J Appl Microbiol 110:704–712

    Article  CAS  Google Scholar 

  • Jin T, Zhang H (2008) Biodegradable polylactic acid polymer with nisin for use in antimicrobial food packaging. J Food Sci 73(3):M127–M134

    Article  CAS  Google Scholar 

  • Jin T, Liu L, Sommers C, Zhang H, Boyd G (2009a) Radiation resistance and postirradiation proliferation of Listeria monocytogenes on ready-to-eat deli meat in the presence of pectin/nisin films. J Food Protect 72(3):644–649

    Google Scholar 

  • Jin T, Liu LS, Zhang H, Hicks K (2009b) Antimicrobial activity of nisin incorporated in pectin and polylactic acid composite films against Listeria monocytogenes. Int J Food Sci Technol 44:322–329

    Article  CAS  Google Scholar 

  • Jin T, Sun D, Su Y, Zhang H, Sue HJ (2009c) Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. J Food Sci 74:M46–M52

    Article  CAS  Google Scholar 

  • Jin T, Sun D, Zhang H, Sue HJ (2009d) Application of zinc oxide quantum dots in food safety. In: Sahu SC, Casciano DA (eds) Nanotoxicity: from in vivo and in vitro models to health risk. Wiley Publisher, Hoboken, pp 81–95

    Google Scholar 

  • Jin T, Zhang H, Boyd G (2010) Incorporation of preservatives in polylactic acid films for inactivating Escherichia coli O157:H7 and extending microbiological shelf-life of strawberry puree. J Food Protect 73(5):812–818

    CAS  Google Scholar 

  • Koper OB, Klabunde JS, Marchin GL, Klabunde KJ, Stoimenov PK, Babra L (2002) Nanoscale powders and formulations with biocidal activity toward spores and vegetative cells of Bacillus species, viruses, and toxins. Curr Microbiol 44:49–55

    Article  CAS  Google Scholar 

  • Kourai H (1993) Immobilized microbiocide. J Antibact antifungal agents 21:331–337 (in Japanese)

    Google Scholar 

  • Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol 107:1193–1201

    Article  CAS  Google Scholar 

  • Liu LS, Jin T, Coffin DR, Liu CK, Hick KB (2010) Poly(lactic acid) membranes containing bacteriocins and EDTA for inhibition of the surface growth of gram-negative bacteria. J Appl Polym Sci 117(1):486–492

    CAS  Google Scholar 

  • Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A (2005) Microwave-assisted synthesis of nanocrystalline MgO and its use as Bacteriocide. Adv Funct Mater 15:1708–1715

    Article  CAS  Google Scholar 

  • McCormick KE, Han IY, Acton JC, Sheldon BW, Dawson PL (2005) In-package pasteurization combined with biocide impregnated films to inhibit Listeria monocytogenes and Salmonella Typhimurium in turkey bologna. Food Sci 70(1):M52–M57

    Article  CAS  Google Scholar 

  • Millette M, Le Tien C, Smoragiewicz W, Lacroix M (2007) Inhibition of Staphylococcus aureus on beef by nisin-containing modified alginate films and beads. Food Control 18:878–884

    Article  CAS  Google Scholar 

  • Moll GN, Clark J, Chan WC, Bycroft BW, Roberts GCK, Konings WM, Driessen AJM (1997) Role of transmembrane pH gradient and membrane binding in nisin pore formation. J Bacteriol 179:135–140

    CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  Google Scholar 

  • Morris JG (2011) How safe is our food? Emerg Infect Dis 17(1):126–128

    Article  Google Scholar 

  • Nel A, Xia T, Ma¨dler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

  • Okouchi S, Murata R, Sugita H, Moriyoshi Y, Maeda N (1995) Calorimetric evaluation of the antimicrobial activities of calcined dolomite. J Antibact Antifungal Agents 26:109–114 (in Japanese)

    Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720

    Article  CAS  Google Scholar 

  • Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods 54:177–182

    Article  CAS  Google Scholar 

  • Sawai J, Yoshikawa T (2004) Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J Appl Microbiol 96:803–809

    Article  CAS  Google Scholar 

  • Sawai J, Igarashi H, Hashimoto A, Kokugan T, Shimizu M (1995) Evaluation of growth inhibitory effect of ceramic powder slurry on bacteria by conductance method. J Chem Eng Jpn 28:288–293

    Article  CAS  Google Scholar 

  • Sawai J, Shoji S, Igarashi H, Hashimoto A, Kokugan T, Shimizu M, Kojima H (1998) Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J Ferment Bioeng 86:521–522

    Article  CAS  Google Scholar 

  • Sawai J, Kojima H, Igarashi H, Hashimoto A, Shoji S, Shimizu M (1999) Bactericidal action of calcium oxide powder. Trans Mater Res Soc Jpn 24:667–670

    CAS  Google Scholar 

  • Sawai J, Kojima H, Igarashi H, Hashimoto A, Shoji S, Sawaki T, Hakoda A, Kawada E, Kokugan T, Shimizu M (2000) Antibacterial characteristics of magnesium oxide powder. World J Microbiol Biotechnol 16:187–194

    Article  CAS  Google Scholar 

  • Sheldon BW (2001) Development of an inhibitory absorbent cellulose gum tray pads for reducing spoilage microorganisms and the risk of cross contamination. Poult Sci 80(Suppl 1):17

    Google Scholar 

  • Shi LE, Xing L, Hou B, Ge H, Guo X, Tang Z (2010) Inorganic nano mental oxides used as anti-microorganism agents for pathogen control. In: Mendez-Vilas A (ed) Current research education technology topics in applied microbiology, microbial biotechnology. Formatex Research Center, Badajoz

    Google Scholar 

  • Shirashi F, Toyoda K, Fukinbara S (1999) Photolytic smf photocatalytic treatment of an aqueous solution containing microbial cells and organic compounds in an annular-flow reactor. Chem Eng Sci 54:1547–1552

    Article  Google Scholar 

  • Steels H, James SA, Roberts IN, Stratford M (2000) Sorbic acid resistance: the inoculum effect. Yeast 16:1173–1183

    Article  CAS  Google Scholar 

  • Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686

    Article  CAS  Google Scholar 

  • Ukuku DO, Fett W (2004) Effect of nisin in combination with EDTA, sodium lactate, and potassium sorbate for reducing Salmonella on whole and fresh-cut cantaloupe. J Food Prot 67(10):2143–2150

    CAS  Google Scholar 

  • Wang YL, Wan YZ, Dong XH, Cheng GX, Tao HM, Wen TY (1995) Preparation and characterization of antibacterial viscose-based activated carbon fiber supporting silver. Carbon 36:1567–1571

    Article  Google Scholar 

  • Wang YL, Wan YZ, Dong H, Cheng GX, Tao HM, Wen TY (1998) Preparation and characterization of antibacterial viscose-based activated carbon fibre supporting silver. Carbon 36:1567–1571

    Article  CAS  Google Scholar 

  • Wilczynski M (2000) Anti-microbial porcelain enamels. Ceram Eng Sci Proc 21:81–83

    Google Scholar 

  • Xie Y, He Y, Irwin P, Jin T, Shi X (2011) Antibacterial activity and mechanism of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 77(7):2325–2331

    Article  CAS  Google Scholar 

  • Yamamoto O (2001) Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorgan Mater 3:643–646

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Anita Parameswaran and Gaoping Bao for technical support. We would also like to thank our reviewers, Drs. Joshua Gurtler and Dike Ukuku for careful critiques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Jin.

Additional information

Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, T., He, Y. Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J Nanopart Res 13, 6877–6885 (2011). https://doi.org/10.1007/s11051-011-0595-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0595-5

Keywords

Navigation