Skip to main content

Advertisement

Log in

Preparation and Characterization of Chitosan Nanocomposites Material Using Silver Nanoparticle Synthesized Carmona retusa (Vahl) Masam Leaf Extract for Antioxidant, Anti-cancerous and Insecticidal Application

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Chitosan derived silver biocomposites (CsS) were produced by green synthesis using Carmona retusa (Vahl) Masam aqueous leaf extract. UV–Vis spectra of synthesized CsS biocomposites showed absorption maxima at 441 nm. FESEM average particle size was 51 nm and spherical in shape. TEM images of CsS biocomposite ranged between 30 nm to 60 nm, the DLS measurement showed the size of 234.1 nm for chitosan derived AgNPs. In FTIR spectra, the C–H winding and were observed for CsS biocomposites. In addition, the elemental composition showed uniform grain boundaries as recognized by EDaX spectra. In-vitro antioxidant activity CsS biocomposites showed the ability to scavenge free radicals. Cytotoxicity analysis of CsS biocomposites on MCF-7 breast cancer cell line revealed 90% inhibition at 500 μg/ml concentration. C. retusa mediated synthesis AgNPs coated chitosan biocomposite showed strong larvicidal activity with low LC50 and LC90 values against the malarial vector, An. stephensi, Ae. aegypti, and Cx. quinquefasciatus respectively. Eight bioactive components were present in aqueous leaf extracts of C. retusa. Based on this study we suggest that C. retusa plant mediated AgNPs chitosan derived silver biocomposites (CsS) has anti-cancerous and insecticidal activity which can further be explored for commercialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Arivalagan, S. Ravichandran, K. Rangasamy, and E. Karthikeyan (2011). Int. J. Chem. Tech. Res. 3, 534–538.

    Google Scholar 

  2. M. K. Teli, S. Mutalik, and G. K. Rajanikant (2010). Curr. Pharm. Des. 16, 1882–1892.

    Article  CAS  PubMed  Google Scholar 

  3. A. Domard (2011). Carbohydr. Polym. 84, 696–703.

    Article  CAS  Google Scholar 

  4. S. Cumana, J. Simons, A. Liese, L. Hilterhaus, and I. Smirnova (2013). J. Mol. Catal. B Enzym. 85–86, 220–228.

    Article  CAS  Google Scholar 

  5. M. Imperiyka, A. Ahmad, S. A. Hanifah, and F. Bella (2014). Phys. B 450, 151–154.

    Article  CAS  Google Scholar 

  6. Y. Xie, J. Zhao, Z. Le, M. Li, J. Chen, Y. Gao, Y. Huang, Y. Qin, R. Zhong, D. Zhou, and Y. Ling (2014). Compos. Sci. Technol. 99, 141–146.

    Article  CAS  Google Scholar 

  7. M. Catauro, F. Bollino, P. Veronesi, and G. Lamanna (2014). Mater. Sci. Eng. C 39, 344–351.

    Article  CAS  Google Scholar 

  8. Y. He, X. Li, Y. Zheng, Z. Wang, Z. Ma, Q. Yang, B. Yao, Y. Zhao, and H. Zhang (2018). New J. Chem. 42, 2882–2888.

    Article  CAS  Google Scholar 

  9. S. Sarkar, E. Guibal, F. Quignard, and A. K. SenGupta (2012). J. Nanopart. Res. 14, 715.

    Article  CAS  Google Scholar 

  10. N. R. Abdelsalam, A. Abdel-Mageed, H. M. Ali, M. Z. M. Salem, M. F. A. Al-Hayali, and M. S. Elshikh (2018). Ecotoxicol. Environ. Saf. 155, 76–85.

    Article  CAS  PubMed  Google Scholar 

  11. K. C. Mouli, T. Vijaya, and S. D. Rao (2009). Pharm. Technol. 1, 4–8.

    Google Scholar 

  12. D. L. Shrisha, K. A. Raveesha, and N. Nagabhushan (2011). J. Med. Plants. Res. 17, 4087–4093.

    Google Scholar 

  13. R. Rajkumar, M. S. Shivakumar, S. Senthil Nathan, and K. Selvam (2018). J. Clust. Sci. 29, 1243–1253.

    Article  CAS  Google Scholar 

  14. Y. He, F. Wei, Z. Ma, H. Zhang, Q. Yang, B. Yao, Z. Huang, J. Li, C. Zeng, and Q. Zhang (2017). RSC Adv. 7, 39842–39851.

    Article  CAS  Google Scholar 

  15. S. Some, I. K. Sen, A. Mandal, T. Aslan, Y. Ustun, E. S. Yilmaz, A. Kati, A. Demirbas, A. K. Mandal, and I. Ocsoy (2019). Mater. Res. Express. 6, 012001–012022.

    Article  CAS  Google Scholar 

  16. G. Benelli (2015). Parasitol. Res. 114, 2801–2805.

    Article  PubMed  Google Scholar 

  17. P. Vivekanandhan, S. Karthi, M. S. Shivakumar, and G. Benelli (2018). Pathogens Global Health 112, 37–46.

    Article  CAS  PubMed  Google Scholar 

  18. G. Benelli and R. Pavela (2018). Ind. Crops Prod. 117, 382–392.

    Article  CAS  Google Scholar 

  19. G. Benelli (2016). Parasitol. Res. 115, 23–34.

    Article  PubMed  Google Scholar 

  20. A. Anitha, S. Sowmiya, P. T. Sudheesh Kumar, S. Deepthi, K. P. Chennazhi, H. Ehrlich, M. Tsurkan, and R. Jayakumar (2014). Prog. Polym. Sci. 39, 1644–1667.

    Article  CAS  Google Scholar 

  21. P. Molyneux (2004). J. Sci. Technol. 26, 211–219.

    CAS  Google Scholar 

  22. B. Halliwell, J. M. Gutteridge, and O. I. Aruoma (1987). Anal. Biochem. 165, 215–219.

    Article  CAS  PubMed  Google Scholar 

  23. T. Mosmann (1983). J. Immunol. Methods 65, 55–63.

    Article  CAS  PubMed  Google Scholar 

  24. WHO (2005). cds/WHO-pes/gcdpp/13.

  25. W. S. Abbott (1925). J. Ecol. Entomol. 18, 265–267.

    Article  CAS  Google Scholar 

  26. P. Sivalingam, J. J. Antony, D. Siva, S. Achiraman, and K. Anbarasu (2012). Colloids Surf. B Biointerfaces 98, 12–17.

    Article  CAS  PubMed  Google Scholar 

  27. A. Maniraj, S. Muthuram Kumar, M. Kannan, K. Rajarathinam, and A. Pushparaj (2017). J. Adv. Appl. Sci. Res. 9, 97–106.

    Article  Google Scholar 

  28. R. Vivek, R. Thangam, K. Muthuchelian, P. Gunasekaran, and K. S. Kaveri Kannan (2012). Process. Biochem. 47, 2405–2410.

    Article  CAS  Google Scholar 

  29. K. Gopinath, S. Gowri, and A. Arumugam (2013). J. Nano Chem. 3, 68–75.

    Article  Google Scholar 

  30. D. Wei, W. Sun, W. Qian, Y. Ye, and X. Ma (2009). Carbohydr. Res. 344, 2375–2382.

    Article  CAS  PubMed  Google Scholar 

  31. S. Dudonne, X. Vitrac, P. Coutiere, M. Woillez, and J. M. Merillon (2009). J. Agric. Food Chem. 57, 1768–1774.

    Article  CAS  PubMed  Google Scholar 

  32. I. Skandrani, J. Boubaker, W. Bhouri, I. Limem, S. Kilani, M. Ben Sghaier, A. Neffati, I. Bouhlel, K. Ghedira, and L. Chekir-Ghedira (2010). Drug Chem. Toxicol. 33, 20–27.

    Article  CAS  PubMed  Google Scholar 

  33. I. Skandrani, I. Limem, A. Neffati, J. Boubaker, M. Ben Sghaier, W. Bhouri, I. Bouhlel, S. Kilani, K. Ghedira, and L. Chekir-Ghedira (2010). Food Chem. Toxicol. 48, 710–715.

    Article  CAS  PubMed  Google Scholar 

  34. C. S. Moody and H. M. Hassan (1982). Proc. Natl. Acad. Sci. U S A 79, 2855–2859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. H. M. Hassan and I. Fridovich (1979). J. Biol. Chem. 254, 10846–10852.

    CAS  PubMed  Google Scholar 

  36. C. E. Schwartz, J. Krall, L. Norton, K. McKay, D. Kay, and R. E. Lynch (1983). J. Biol. Chem. 258, 6277–6281.

    CAS  PubMed  Google Scholar 

  37. H. Rosen and S. J. Klebanoff (1979). J. Exp. Med. 149, 27–39.

    Article  CAS  PubMed  Google Scholar 

  38. G. Applerot, A. Lipovsky, R. Dror, N. Perkas, Y. Nitzan, and R. Lubart (1968). Adv. Funct. Mater. 19, 842–852.

    Article  CAS  Google Scholar 

  39. K. J. A. Davies (1968). J. Biol. Chem. 262, 9895–9901.

    Google Scholar 

  40. J. M. Gutteridge, D. A. Rowley, and B. Halliwell (1981). Biochem. J. 199, 263–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. R. L. Baldwin (1968). J. Dairy Sci. 51, 104–111.

    Article  CAS  Google Scholar 

  42. F. Regoli, M. Nigro, S. Bompadre, and G. W. Winston (2000). Aquat. Toxicol. 49, 13–25.

    Article  CAS  PubMed  Google Scholar 

  43. C. S. Ryu, C. H. Kim, S. Y. Lee, K. S. Lee, K. J. Choung, G. Y. Song, B. H. Kim, S. Y. Ryu, H. S. Lee, and S. K. Kim (2012). Food Chem. 132, 333–337.

    Article  CAS  PubMed  Google Scholar 

  44. S. Banerjee, J. P. Saikia, A. Kumar, and B. K. Konwar (2010). Nanotechnology 21, 045101–045108.

    Article  CAS  PubMed  Google Scholar 

  45. G. Kiran, M. Sarangapani, T. Gouthami, and A. R. Narsimha Reddy (2013). Toxic. Environ. Chem. 95, 367–378.

    Article  CAS  Google Scholar 

  46. K. Gopinath, M. Chinnadurai, N. P. Devi, K. Bhakyaraj, S. Kumaraguru, T. Baranisri, A. Sudha, M. Zeeshan, A. Arumugam, M. Govindarajan, and N. S. Alharbi (2017). J. Clust. Sci. 28, 621–635.

    Article  CAS  Google Scholar 

  47. J. Ching, T. K. Chua, L. C. Chin, A. J. Lau, Y. K. Pang, J. M. Jaya, C. H. Tan, and H. L. Koh (2010). Indian J. Exp. Biol. 48, 275–279.

    CAS  PubMed  Google Scholar 

  48. R. Vidhya and R. Udayakumar (2015). Int. J. Biochem. Res. Rev. 7, 192–203.

    Article  CAS  Google Scholar 

  49. F. Nikkon, K. A. Salam, T. Yeasmin, A. Mosaddik, P. Khondkar, and M. E. Haque (2010). Pharm. Biol. 48, 264–268.

    Article  CAS  PubMed  Google Scholar 

  50. G. Ramkumar, S. Karthi, R. Muthusamy, P. Suganya, D. Natarajan, E. J. Kweka, and M. S. Shivakumar (2016). PLoS ONE 11, 1–11.

    Google Scholar 

Download references

Acknowledgements

This research was funded by University Grants Commission-Rajiv Gandhi National Fellowship Programme (Sanction Number: F1-17.1/2016-17/RGNF-2015-17-SC-TAM-26510) for their financial support. The authors also are thankful to the Department of Botany, School of Life Sciences, Periyar University, Salem, Tamil Nadu-636 011, India, for providing infrastructural facility, and KIRND Institute of Research and Development Pvt Ltd, Tiruchirappalli, Tamil Nadu-620 020, India, for GC–MS analysis and Antioxidant studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuppusamy Selvam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajkumar, R., Shivakumar, M.S., Senthil Nathan, S. et al. Preparation and Characterization of Chitosan Nanocomposites Material Using Silver Nanoparticle Synthesized Carmona retusa (Vahl) Masam Leaf Extract for Antioxidant, Anti-cancerous and Insecticidal Application. J Clust Sci 30, 1145–1155 (2019). https://doi.org/10.1007/s10876-019-01578-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01578-9

Keywords

Navigation