Skip to main content
Log in

Characterization, Antitumor and Antibacterial Potentials of Extracellular Pigment-Mediated Silver Nanoparticles Produced from Penicillium vinaceum AUMC 9402; Green Approach

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

This study aimed to a rapid, eco-friendly and low-cost method for green synthesis of pigment mediated silver nanoparticles by Penicillium vinaceum AUMC 9402 (Pp–AgNPs) as an alternative to chemical procedures. Pp–AgNPs were subjected to microscopic and spectrophotometric analysis to determine its shape and size as TEM, UV–Visible Spectrophotometer, XRD, FTIR and DLS. The TEM analysis has revealed the spherical shape of Pp–AgNPs with size ranged between 8.2 and 14.9 nm with the mean of 10.6 nm. Thermal stability of Pp–AgNPs was also studied by TGA and DSC analysis which revealed high thermal stability of theses nanoparticles. Moreover, Pp–AgNPs have been evaluated for their effect on the growth of some +ve and −ve bacterial strains as Staphylococcus aureus ATCC 6538, Bacillus subtilis NCTC 10400, Pseudomonas aeruginosa ATCC-10145 and Escherichia coli ATCC 8739. Results revealed that Pp–AgNPs significantly have inhibitory effect on the tested bacteria. Additionally, the antitumor effect of Pp–AgNPs was also studied and the results revealed that these particles can be used as a promising antitumor agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. R. Celestino, L. E. Carvalho, M. P. Lima, A. M. Lima, M. M. Ogusku, and J. V. B. Souza (2014). Proc. Biochem. 49, 569–575.

    Article  CAS  Google Scholar 

  2. S. A. Carvalho, J. V. Coelho, and J. A. Takahashi (2010). Food Sci. Technol. Inter. 16, 315–320.

    Article  CAS  Google Scholar 

  3. Y. Caro, L. Anamale, M. Fouillaud, P. Laurent, T. Petit, and L. Dufosse (2012). Nat. Prod. Bioprospect. 2, 174–193.

    Article  CAS  PubMed Central  Google Scholar 

  4. L. Dufosse (2006). Food Technol. Biotechnol. 44, 313–321.

    CAS  Google Scholar 

  5. C. K. Venil and P. Lakshmanaperumalsamy (2009). Electron. J. Biol. 5, 49–61.

    Google Scholar 

  6. S. Mehrabian, A. Majd, and I. Majd (2000). Aerobiologia 16, 455–458.

    Article  Google Scholar 

  7. P. Velmurugan, S. Kamala Kannan, V. Balachandar, P. Lakshmanaperumalsamy, J. C. Chae, and B. T. Oh (2010). Carbohydr. Polym. 79, 262–268.

    Article  CAS  Google Scholar 

  8. M. S. Teixeira, M. S. Martins, J. C. Da Silva, L. S. Kirsch, O. C. Fernandes, A. B. Carneiro, and N. Durán (2012). Curr. Trends Biotechnol. Pharm. 6, (3), 300–311.

    CAS  Google Scholar 

  9. V. C. Santos-ebinuma, I. C. Roberto, M. F. S. Teixeira, and A. Passoajr (2013). Biotechnol. Prog. 29, 778–785.

    Article  CAS  PubMed  Google Scholar 

  10. H. P. Borase, R. B. Salunkhe, C. D. Patil, R. K. Suryawanshi, B. K. Salunke, N. D. Wagh, and S. V. Patil (2015). Biotechnol. Appl. Biochem. 62, 780–784.

    Article  CAS  PubMed  Google Scholar 

  11. P. Mohanpuria, N. K. Rana, and S. K. Yadav (2008). J. Nanopart. Res. 10, 507–517.

    Article  CAS  Google Scholar 

  12. A. K. Singh and O. N. Srivastava (2015). Nanoscale Res. Lett. 10, 353.

    Article  CAS  PubMed Central  Google Scholar 

  13. J. Leveneur, G. I. N. Waterhouse, J. Kennedy, J. B. Metson, and D. R. G. Mitchell (2011). J. Phys. Chem. 115, 20978–20985.

    CAS  Google Scholar 

  14. H. P. Borase, B. K. Salunke, R. B. Salunkhe, C. D. Patil, J. E. Hallsworth, B. S. Kim, and S. V. Patil (2014). Appl. Biochem. Biotechnol. 173, 1–29.

    Article  CAS  PubMed  Google Scholar 

  15. H. P. Borase, C. D. Patil, R. K. Suryawanshi, and S. V. Patil (2013). Appl. Biochem. Biotechnol. 171, 676–688.

    Article  CAS  PubMed  Google Scholar 

  16. S. S. Ravi, L. R. Christena, N. SaiSubramanian, and S. P. Anthony (2013). Analyst 138, 4370–4377.

    Article  CAS  PubMed  Google Scholar 

  17. F. Heidarpour, W. W. Ghani, A. Fakhru’l-Razi, S. Sobri, V. Heydarpour, M. Zargar, and M. R. Mozafari (2011). Clean Technol. Environ. 13, 499–507.

    Article  CAS  Google Scholar 

  18. A. F. El-Baz, A. I. El-Batal, F. M. Abomosalam, A. A. Tayel, Y. M. Shetaia, and S. T. Yang (2016). J. Microbiol. 56, 531–540.

    CAS  Google Scholar 

  19. S. V. Otari, R. M. Patil, S. J. Ghosh, N. D. Thorat, and S. H. Pawar (2015). Spectrochim. Acta. A Mol. Biomol. Spectrosc. 136, 1175–1180.

    Article  CAS  PubMed  Google Scholar 

  20. R. B. Salunkhe, S. V. Patil, B. K. Salunke, C. D. Patil, and A. M. Sonawane (2011). Appl. Biochem. Biotechnol. 165, 221–234.

    Article  CAS  PubMed  Google Scholar 

  21. V. Ahluwalia, J. Kumar, R. Sisodia, N. A. Shakil, and S. Walia (2014). Ind. Crops Prod. 55, 202–206.

    Article  CAS  Google Scholar 

  22. K. C. Bhainsa and S. F. D’Souza (2006). Colloids Surf. B 47, 160–164.

    Article  CAS  Google Scholar 

  23. A. Ingle, M. Rai, A. Gade, and M. Bawaskar (2009). J. Nanopart. Res. 11, 2079.

    Article  CAS  Google Scholar 

  24. A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M. I. Khan, R. Kumar, and M. Sastry (2003). Colloids Surf. B 28, 313–318.

    Article  CAS  Google Scholar 

  25. H. Barabadi and S. Honary (2016). Pharm. Biomed. Res. 2, 1–7.

    Google Scholar 

  26. P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S. Sainkars, M. Khan, R. Parishcha, P. Ajavkumar, et al. (2001). Nano Lett. 1, 515–519.

    Article  CAS  Google Scholar 

  27. F. Denizot and R. Lang (1986). J. Immunol. Methods 89, (2), 271–277.

    Article  CAS  PubMed  Google Scholar 

  28. S. Pandey, G. K. Goswami, and K. K. Nanda (2012). Int. J. Biol. Macromol. 51, 583–589.

    Article  CAS  PubMed  Google Scholar 

  29. K. Kalimuthu, R. Suresh Babu, D. Venkataraman, M. Bilal, and S. Gurunathan (2008). Colloids Surf. B Biointerfaces 65, 150–153.

    Article  CAS  PubMed  Google Scholar 

  30. R. C. Murdock, L. Braydich-Stolle, A. M. Schrand, J. J. Schlager, and S. M. Hussain (2008). Toxicol. Sci. 101, 239–253.

    Article  CAS  PubMed  Google Scholar 

  31. V. K. Sharma, R. A. Yngard, and Y. Lin (2009). Adv. Colloid Interface Sci. 145, 83–96.

    Article  CAS  PubMed  Google Scholar 

  32. R. J. Pecora (2000). Nanopart. Res. 2, 123–131.

    Article  CAS  Google Scholar 

  33. S. K. Brar and M. Verma (2011). Trends Anal. Chem. 30, 4–17.

    Article  CAS  Google Scholar 

  34. L. Calzolai, D. Gilliland, C. Pascual Garc`ıa, and F. Rossi (2011). J. Chromatogr. 1218, 4234–4239.

    Article  CAS  Google Scholar 

  35. R. Augustine, N. Kalarikkaland, and S. Thomas (2014). Appl. Nanosci. 4, 809–818.

    Article  CAS  Google Scholar 

  36. K. Singh, M. Panghal, S. Kadyan, U. Chaudhary, and J. P. Yadav (2014). J. Nanobiotechnol. 12, 40.

    Article  CAS  Google Scholar 

  37. G. Narasimha, B. Praveen, and K. Mallikarjuna (2011). B Deva Prasad Raju. Int. J. Nano Dimens. 2, 29–36.

    CAS  Google Scholar 

  38. M. Saravanan (2010). World Acad. Sci. Eng. Technol. 68, 505.

    Google Scholar 

  39. S. H. Koli, B. V. Mohite, H. P. Borase, and S. V. Patil (2017). J. Clust. Sci. 28, 2719.

    Article  CAS  Google Scholar 

  40. C. Sekar and R. Parimaladevi (2009). J. Optoelectron. Biomed. Mater. 1, 215.

    Google Scholar 

  41. M. Abdeaziz and E. M. Abdelrazek (2013). J. Electron. Mater. 42, 2743.

    Article  CAS  Google Scholar 

  42. S. Yong, Y. Junyeob, W. Cheol, L. Jinhwan, H. Sukjoon, H. N. Koo, Y. Dong-Yol, and H. K. Seung (2012). Thermochim. Acta 20, 52–56.

    Google Scholar 

  43. Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, and J. O. Kim (2000). J. Biomed. Mater. Res. 52, 662–668.

    Article  CAS  PubMed  Google Scholar 

  44. S. Koli, B. Mohite, R. Suryawanshi, H. Borase, and S. Patil (2018). Bioprocess Biosyst. Eng. 41, 715–727.

    Article  CAS  PubMed  Google Scholar 

  45. A. Sankaranarayanan, G. Munivel, G. Karunakaran, S. Kadaikunnan, N. S. Alharbi, J. M. Khaled, and D. Kuznetsov (2017). J. Clust. Sci 28, 995–1008.

    Article  CAS  Google Scholar 

  46. N. Priyadharsshini, P. Mubarak Ali, and P. Velusamy (2013). Colloids Surf. B Biointerfaces 102, 232–237.

    Article  CAS  Google Scholar 

  47. D. A. Sun, H. S. Courtney, and E. H. Beachey (1988). Antimicrob. Agents Chemother. 32, 1370–1374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. M. G. Guzmán, J. Dille, and S. Godet (2009). Int. J. Chem. Biomol. Eng. 2, 171–179.

    Google Scholar 

  49. M. Yamanaka, K. Hara, and J. Kudo (2005). Appl. Environ. Microbiol. 71, 7589–7593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. W. R. Li, X. B. Xie, Q. S. Shi, H. Y. Zeng, O. Y. You-Sheng, and Y. B. Chen (2010). Appl. Microbiol. Biotechnol. 85, 1115–1122.

    Article  CAS  PubMed  Google Scholar 

  51. M. A. Dar, A. Ingle, and M. Rai (2013). Nanotechnol. Biol. Med. 9, 105–110.

    Article  CAS  Google Scholar 

  52. K. I. Batarseh (2004). J. Antimicrob. Chemother. 54, 546–548.

    Article  CAS  PubMed  Google Scholar 

  53. A. M. Fayaz, K. Balaji, M. Girilal, R. Yadav, P. T. Kalaichelvan, and R. Venketesan (2010). Nanomedicine 6, 103–109.

    Article  CAS  PubMed  Google Scholar 

  54. T. A. Souza, L. P. Franchi, L. R. Rosa, et al. (2016). Mutat. Res. Genet. Toxicol. Environ. Mutagen. 795, 70–83.

    Article  CAS  PubMed  Google Scholar 

  55. A. Alfuraydi, S. Devanesan, M. Al-Ansari, M. S. AlSalhi, and A. J. Ranjitsingh (2019). J. Photochem. Photobiol. B Biol. 192, 83–89. https://doi.org/10.1016/j.jphotobiol.2019.01.011.

    Article  CAS  Google Scholar 

  56. N. Igaz, D. Kovács, Z. Rázga, et al. (2016). Colloids Surf. B Biointerfaces 146, 670–677.

    Article  CAS  PubMed  Google Scholar 

  57. E. E. Emekaa, O. C. Ojiefoh, C. Aleruchi, L. A. Hassan, O. M. Christiana, M. Rebecca, E. O. Darea, and A. E. Temitope (2014). Micron 57, 1–5.

    Article  CAS  Google Scholar 

  58. A. K. Suresh, D. Pelletier, W. Wang, J. L. Morrell-Falvey, B. Gu, and M. J. Doktycz (2012). Langmuir 28, 2727–2735.

    Article  CAS  PubMed  Google Scholar 

  59. A. Melaiye, Z. Sun, K. Hindi, et al. (2005). J. Am. Chem. Soc. 127, (7), 2285–2291.

    Article  CAS  PubMed  Google Scholar 

  60. S. Barua, R. Konwarha, S. S. Bhattacharyab, P. Dasb, K. S. P. Devic, T. K. Maitic, M. Mald, and N. Karaka (2013). Colloids Surf. B 105, 37–42.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heba I. Abo-Elmagd.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abo-Elmagd, H.I., Housseiny, M.M. Characterization, Antitumor and Antibacterial Potentials of Extracellular Pigment-Mediated Silver Nanoparticles Produced from Penicillium vinaceum AUMC 9402; Green Approach. J Clust Sci 30, 869–880 (2019). https://doi.org/10.1007/s10876-019-01546-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01546-3

Keywords

Navigation