Skip to main content

Advertisement

Log in

Green Synthesis of Silver Nanoparticles Using Arachis hypogaea (Ground Nut) Root Extract for Antibacterial and Clinical Applications

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The present study focused on the green synthesis of silver nanoparticles (AgNPs) using Arachis hypogaea (ground nut) root extract for the antibacterial and clinical application. The presence of major phytochemical compounds are found to be 2H-Pyaran,2,5-diethenyltetrahydro, Didodecyl phthalate, Decanoic acid, Tetradecanoic acid, Bis(2-ethylhexyl) phthalate, Dodecanoic acid, Phosphonic acid, 2-(4-Methoxyphenyl)-5-(4-methoxynaphthyl) thiophene and Methyl 2-(N-Benzylimino)-4-chloro-3,3-dimethylbutanoate by GC–MS. Nanoparticles synthesis is confirmed by UV–Vis analysis by observing the maximum absorption spectrum at 450 nm. XRD and SEM–EDX results reveals the synthesized nanoparticles are cubic crystalline with agglomerated particles of silver oxide with biomolecules present around it. TEM images clearly shows that the biosynthesized nanoparticles are mostly spherical and irregular shaped with an average particles size of 30 nm. Highest susceptibility pattern of silver nanoparticle against Enterococcus sp. (35 ± 0.4 mm) which followed by Pseudomonas sp. (33 mm) and Staphylococcus aureus (29 mm). Green synthesized nanoparticles are coated over the commercially available clinical band aid cloth by dip coating method. Silver nanoparticle incorporated band aid cloth showed good antibacterial activity against the harmful bacteria which usually cause infection and interfere during wound healing. Our findings revealed that green nanoparticle has a good antibacterial action against harmful bacteria and showed good response for efficient clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Nanda and M. Saravanan (2009). Nanomed Nanotechnol Biol Med 5, 452–456.

    Article  CAS  Google Scholar 

  2. A. Annamalai, S. T. Babu, N. A. Jose, D. Sudha, and C. V. Lyza (2011). World Appl Sci J 13, 1833–1840.

    CAS  Google Scholar 

  3. K. Mallikarjuna, G. Narasimha, G. R. Dillip, B. Praveen, B. Shreedhar, C. Sree Lakshmi, B. V. S. Reddy, and B. Deva Prasad Raju (2011). Dig J Nanomater Biostructures 6, 181–186.

    Google Scholar 

  4. V. Baskaralingam, C. G. Sargunar, Y. C. Lin, and J. C. Chen (2012). Nanotechnol Dev 2, 3.

    Article  Google Scholar 

  5. R. Bunghez, M. Ghiurea, V. Faraon, and R. M. Ion (2011). J Optoelectron Adv Mater 13, 870–873.

    CAS  Google Scholar 

  6. A. Thirumurugan, R. J. Ganesh, S. Akila, N. A. Tomy, and H. Meruvu (2010). J Pharm Res 3, 2510–2511.

    CAS  Google Scholar 

  7. A. Singh, D. Jain, M. K. Upadhyay, N. Khandelwal, and H. N. Verma (2010). Dig J Nanomater Biostructures 5, 483–489.

    Google Scholar 

  8. A. Thirumurugan, G. J. Jiflin, G. Rajagomathi, N. A. Tomy, S. Ramachandran, and R. Jaiganesh (2010). Int J Biol Technol 1, 75–77.

    CAS  Google Scholar 

  9. S. Chauhan, M. Upadhyay, N. Rishi, and S. Rishi (2011). Int J Nanomater Biostructures 1, 17–21.

    Google Scholar 

  10. FAOSTAT (2013) Food and Agricultural Organization of the United Nations, Statistics Division, Production and trade data for groundnuts (peanuts). Retrieved 12 Oct 2015.

  11. E. Emekli-Alturfan, E. Kasikci, and A. Yarat (2008). Phytother Res 22, 180–184.

    Article  CAS  Google Scholar 

  12. J. C. Chang, Y. H. Lai, B. Djoko, P. L. Wu, C. D. Liu, Y. W. Liu, and R. Y. Chiou (2006). J Agric Food Chem 54, 10281–10287.

    Article  CAS  Google Scholar 

  13. K. Kouakou, D. Egrise, R. Moreno-Reyes, and S. Kati-Coulibaly (2013). J Phys Pharm Adv 3, 139–147.

    Article  Google Scholar 

  14. V. Falanga, F. Grinnell, B. Gilchrest, Y. T. Maddox, and A. Moshell (1994). Workshop on the pathogenesis of chronic wounds. J Invest Dermatol 102, 125–127.

    Article  CAS  Google Scholar 

  15. S. K. Purohit and R. Solanki (2013). Asian J Res. Pharm Sci 3, 68–71.

    Google Scholar 

  16. M. Collier (2003). Nurs Times 99, 63–64.

    Google Scholar 

  17. A. W. Bauer, W. M. Kirby, J. C. Sherris, and M. Turck (1966). Am J Clin Pathol 45, 493–496.

    CAS  Google Scholar 

  18. K. Saware and A. Venkataraman (2014). J Clust Sci 25, 1157–1171.

    Article  CAS  Google Scholar 

  19. M. Khatami, R. Mehnipor, M. H. S. Poor, and G. S. Jouzani (2016). J Clust Sci 27, 1601–1612.

    Article  CAS  Google Scholar 

  20. N. Saha, P. Trivedi, and S. D. Gupta (2016). J Clust Sci. doi:10.1007/s10876-016-1050-7.

    Google Scholar 

  21. S. Muthukrishnan, S. Bhakya, T. Senthil, T. S. Kumar, and M. V. Rao (2015). Ind Crops Prod 63, 119–124.

    Article  CAS  Google Scholar 

  22. M. Govindarajan, M. Rajeswary, K. Veerakumar, U. Muthukumaran, S. L. Hoti, H. Mehlhorn, D. R. Barnard, and G. Benelli (2016). Parasitol Res 115, 723–733.

    Article  Google Scholar 

  23. K. Jeeva, M. Thiyagarajan, V. Elangovan, N. Geetha, and P. Venkatachalam (2014). Ind Crops Prod 52, 714–720.

    Article  CAS  Google Scholar 

  24. J. Venugobal and K. Anandalakshmi (2016). J Clust Sci 27, 1683–1699.

    Article  CAS  Google Scholar 

  25. J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, and M. J. Yaca-man (2005). Nanotechnology 16, 2346–2353.

    Article  CAS  Google Scholar 

  26. M. Danilcauk, A. Lund, J. Saldo, H. Yamada, and J. Michalik (2006). Spectrochim Acta Part A 63, 189–191.

    Article  Google Scholar 

  27. J. S. Kim, E. Kuk, K. Yu, J. H. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, C.-Y. Hwang, Y. K. Kim, Y. S. Lee, D. H. Jeong, and M. H. Cho (2007). Nanomedicine 3, 95–101.

    Article  CAS  Google Scholar 

  28. M.-J. Catalina and E. M. V. Hoek (2010). J Nanoparticle Res 12, 1531–1551.

    Article  Google Scholar 

  29. P. Dibrov, J. Dzioba, K. K. Gosink, and C. C. Hase (2002). Antimicrob Agents Chemother 46, 2668–2670.

    Article  CAS  Google Scholar 

  30. S. C. Bankalgi, R. L. Londonkar, U. Madire, and N. K. A. Tukappa (2016). J Clust Sci 27, 1485–1497.

    Article  CAS  Google Scholar 

  31. L. J. Wilkinson, R. J. White, and J. K. Chipman (2011). J Wound Care 20, 543–549.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors extend their sincere appreciations to the Deanship of Scientific Research at King Saud University for its funding this Prolific Research Group (PRG-1437-36). Authors are also thankful to the Management, K. S. Rangasamy College of Arts and Science for providing basic facilities to carry out the project work. One among the author (Dr. Gopalu Karunakaran) gratefully acknowledge the financial support of the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST « MISiS » (No. К4-2015-017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sankaranarayanan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankaranarayanan, A., Munivel, G., Karunakaran, G. et al. Green Synthesis of Silver Nanoparticles Using Arachis hypogaea (Ground Nut) Root Extract for Antibacterial and Clinical Applications. J Clust Sci 28, 995–1008 (2017). https://doi.org/10.1007/s10876-016-1084-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1084-x

Keywords

Navigation