Skip to main content
Log in

Biogenic synthesis of silver nanoparticles using cell-free extract of Bacillus safensis LAU 13: antimicrobial, free radical scavenging and larvicidal activities

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The cell-free extract of Bacillus safensis LAU 13 strain (GenBank accession No: KJ461434) was used for green biosynthesis of silver nanoparticles (Ag-NPs). Characterization of Ag-NPs was carried out using UV-VIS spectroscopy, Fourier-transform infrared spectroscopy, and transmission electron microscopy. Evaluation of synthesized Ag-NPs as antimicrobial agents was done using multi-drug resistant clinical isolates as well as their synergistic effects when combined with some selected antibiotics. Furthermore, potential of Ag-NPs as antimicrobial additives in paint was demonstrated. The Ag-NPs have maximum absorbance at 419 nm, with peaks at 3308, 2359, 1636, and 422 cm-1, indicating that proteins were the capping and stabilisation molecules in the synthesis of Ag-NPs. The particles were spherical shaped having size of 5–95 nm, with silver as the prominent metal from the energy dispersive X-ray analysis, while selected area electron diffraction pattern agrees well with the crystalline nature and face-centred cubic phase of Ag-NPs. Inhibition of Staphylococcus aureus, Escherichia coli, Klebsiella granulomatis and Pseudomonas aeruginosa was achieved at 100 μg/mL. Improvement of activities of augmentin, ofloxacin and cefixime to the tune of 7.4-142.9% was achieved in synergistic study, while total inhibitions of P. aeruginosa, S. aureus, Aspergillus flavus and Aspergillus fumigatus were achieved in Ag-NPs-paint admixture. The Ag-NPs showed potent antioxidant and larvicidal activities with IC50 and LC50 of 15.99 and 42.19 μg/mL, respectively. The present study demonstrated that the biosynthesized Ag-NPs have potent biological activities, which can find applications in diverse areas. The report adds to the growing biotechnological relevance of B. safensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ag-NPs:

silver nanoparticles

DPPH:

2,2-diphenyl-1-picrylhydrazyl

FTIR:

Fourier transform infrared

TEM:

transmission electron microscopy

References

  • Adewoye S.O. & Lateef A. 2004. Assessment of the microbiological quality of Clarias gariepinus exposed to an industrial effluent in Nigeria. Environmentalist 24: 249–254.

    Article  Google Scholar 

  • Andrews J.M. 2005. BSAC standardized disc susceptibility testing method (version 4). J. Antimicrob. Chemother. 56: 60–76.

    Article  CAS  PubMed  Google Scholar 

  • Bhakya S., Muthukrishnan S., Sukumaran M. & Muthukumar M. 2015. Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl. Nanosci. (in press) http://dx.doi.org.10.1007/s13204-015-0473-z.

    Google Scholar 

  • Bhat R., Desphande R., Ganachari S.V., Huh D.O. & Venkarataman A. 2011. Photo-irradiated bio-synthesis of silver nano-particles using edible mushroom Pleurotus florida and their antibacterial activity studies. Bioinorg. Chem. Applic. 2011: Article ID: 650979.

    Google Scholar 

  • Cho K.H., Park J.E., Osaka T. & Park S.G. 2005. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim. Acta 51: 956–960.

    Article  CAS  Google Scholar 

  • Chortyk T.O., Severson R.F., Cutler H.C. & Siesson V.A. 1993. Antibiotic activities of sugar esters isolated from selected Nicotiana species. Biosci. Biotechnol. Biochem. 57: 1355–1356.

    Article  CAS  PubMed  Google Scholar 

  • Devi L.S. & Joshi S.R. 2012. Antimicrobial and synergistic effects of silver nanoparticles synthesized using soil fungi of high altitudes of Eastern Himalaya. Mycobiology 40: 27–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Batal A.I., ElKenawya N.M., Yassin A.S. & Amin M.A. 2015. Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles. Biotechnol. Reports 5: 31–39.

    Article  Google Scholar 

  • El-Shanshoury A.E.R., ElSilk S.E. & Ebeid M.E. 2011. Extracellular biosynthesis of silver nanoparticles using Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633, and Streptococcus thermophilus Esh1 and their antimicrobial activities. ISRN Nanotechnology 2011: Article ID: 385480.

    Google Scholar 

  • Fayaz A.M., Balaji K., Girilal M., Yadav R., Kalaichelvam P.T. & Venketesan R. 2010. Biogenic synthesis of silver nanopar-ticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. Biol. Med. 6: 103–109.

    Article  CAS  Google Scholar 

  • Goncharova A.V., Karpenyuk T.A., Tsurkan Y.S., Beisembaeva R.U., Kalbaeva A.M., Mukasheva T.D. & Ignatova L.V. 2013. Screening and identification of microorganisms-potential producers of arachidonic acid. Int. J. Biol. Agric. Biosystems Life Sci. Eng. 7: 368–371.

    Google Scholar 

  • Jayanthi P. & Lalitha P. 2011. Reducing power of the solvent extracts of Eichhornia crassipes (Mart.) Solms. Int. J. Pharm. Pharmaceut. Sci. 3: 126–128.

    Google Scholar 

  • Kaiser J.P., Zuin S. & Wick P. 2013. Is nanotechnology revolutionizing the paint and lacquer industry? A critical opinion. Sci. Total Environ. 442: 282–289.

    Article  CAS  PubMed  Google Scholar 

  • Kannan R.R.R., Arumugam R., Ramya D., Manivannan K. & Anantharaman P. 2013. Green synthesis of silver nanoparticles using marine macroalga Chaetomorpha linum. Appl. Nanosci. 3: 229–233.

    Article  CAS  Google Scholar 

  • Khaneja R., Perez-Fons L., Fakhry S., Baccigalupi L., Steiger S., To E., Sandmann G., Dong T.C., Ricca E., Fraser P.D. & Cutting S.M. 2010. Carotenoids found in Bacillus. J. Appl. Microbiol. 108: 1889–1902.

    CAS  PubMed  Google Scholar 

  • Kothari V.V., Kothari R.K., Kothari C.R., Bhatt V.D., Nathani N.M., Koringa P.G., Joshi C.G. & Vyas B.R.M. 2013. Ge-nomic sequence of salt-tolerant Bacillus safensis strain VK, isolated from saline desert area of Gujarat, India. Genome Announc. 2: e00337–14.

    Google Scholar 

  • Lateef A. 2004. The microbiology of a pharmaceutical effluent and its public health implications. World J. Microbiol. Biotechnol. 20: 167–171.

    Article  CAS  Google Scholar 

  • Lateef A., Adelere I.A. & Gueguim-Kana E.B. 2015a. Bacillus safensis LAU 13: a new source of keratinase and its multifunctional biocatalytic applications. Biotechnol. Biotechnol. Equip. 29: 54–63.

    Article  CAS  PubMed  Google Scholar 

  • Lateef A., Adelere I.A. & Gueguim-Kana E.B. 2015b. The biology and potential biotechnological applications of Bacillus safensis. Biologia 70: 411–419.

    Google Scholar 

  • Lateef A., Adelere I.A., Gueguim-Kana E.B., Asafa T.B. & Beukes L.S. 2015c. Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13. Int. Nano Lett. 5: 29–35.

    Article  CAS  Google Scholar 

  • Lateef A., Azeez M.A., Asafa T.B., Yekeen T.A., Akinboro A., Oladipo I.C., Ajetomobi F.E., Gueguim-Kana E.B. & Beukes, L.S. 2015d. Cola nitida-mediated biogenic synthesis of silver nanoparticles using seed and seed shell extracts and evaluation of antibacterial activities. BioNanoSci. (in press) http://dx.doi.org.10.1007/s12668-015-0181-x.

    Google Scholar 

  • Lateef A., Davies T.E., Adelekan A., Adelere I.A., Adedeji A.A. & Fadahunsi A.H. 2010. Akara Ogbomoso: microbiological examination and identification of hazards and critical control points. Food Sci. Technol. Int. 16: 389–400.

    Article  CAS  PubMed  Google Scholar 

  • Lateef A. & Ojo M.O. 2015. Public health issues in the processing of cassava (Manihot esculenta) for the production of lafun and the application of hazard analysis control measures. Qual. Assur. Safety Crops Foods (in press) http://dx.doi.org.10.3920/QAS2014.0476.

    Google Scholar 

  • Lateef A., Ojo S.A., Azeez M.A., Asafa T.B., Yekeen T.A., Ak-inboro A., Oladipo I.C., Gueguim-Kana E.B. & Beukes L.S. 2015e. Cobweb as novel biomaterial for the green and eco-friendly synthesis of silver nanoparticles. Appl. Nanosci. (in press) http://dx.doi.org.10.1007/s13204-015-0492-9.

    Google Scholar 

  • Lateef A., Oloke J.K. & Gueguim-Kana E.B. 2004. Antimicrobial resistance of bacterial strains isolated from orange juice products. Afr. J. Biotechnol. 3: 334–338.

    Article  CAS  Google Scholar 

  • Lateef A., Oloke J.K. & Gueguim-Kana E.B. 2005. The prevalence of bacterial resistance in clinical, food, water and some environmental samples in Southwest Nigeria. Environ. Monit. Assess. 100: 59–69.

    Article  CAS  PubMed  Google Scholar 

  • Lateef A., Oloke J.K., Gueguim Kana E.B., Oyeniyi S.O., Oni-fade O.R., Oyeleye A.O., Oladosu O.C. & Oyelami A.O. 2008. Improving the quality of agro-wastes by solid state fermentation: enhanced antioxidant activities and nutritional qualities. World J. Microbiol. Biotechnol. 24: 2369–2374.

    Article  CAS  Google Scholar 

  • Lateef A., Oloke J.K., Gueguim-Kana E.B. & Pacheco E. 2006. The microbiological quality of ice used to cool drinks and foods in Ogbomoso metropolis, Southwest, Nigeria. Internet J. Food Safety 8: 39–43.

    Google Scholar 

  • Lateef A. & Yekeen T.A. 2006. Microbial attributes of a pharmaceutical effluent and its genotoxicity on Allium cepa. Int. J. Environ. Stud. 63: 534–536.

    Google Scholar 

  • Lateef A., Yekeen T.A. & Ufuoma P.E. 2007. Bacteriology and genotoxicity of some pharmaceutical wastewaters in Nigeria. Int. J. Environ. Health 1: 551–562.

    Article  CAS  Google Scholar 

  • Mishra A., Kumari M., Pandey S., Chaudhry V., Gupta K.C. & Nautiyal C.S. 2014. Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Biore-sour. Technol. 166: 235–242.

    CAS  Google Scholar 

  • Mokhtari M., Deneshpojouh S., Seyedbagheri S., Atashdehghan R., Abdi K., Sarkar S. & Sharverdi R.A. 2009. Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumoniae: the effect of visible-light irradiation and the liquid mixing process. Mater. Res. Bull. 44: 1415–1421.

    Article  CAS  Google Scholar 

  • Nazeruddin G.M., Prasad N.R., Prasad S.R., Shaikh Y.I., Waghmare S.R. & Adhyapak P. 2014. Coriandrum sativum seed extract assisted in situ green synthesis of silver nanoparticle and its anti-microbial activity. Ind. Crops Prod. 60: 212–216.

    Article  CAS  Google Scholar 

  • Olajire A.A. & Azeez L. 2011. Total antioxidant activity, phenolic, flavonoid and ascorbic acid contents of Nigerian vegetables. Afr. J. Food Sci. Technol. 2: 022–029.

    Google Scholar 

  • Oyaizu M. 1986. Studies on products of browning reactions: an-tioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 44: 307–315.

    Article  CAS  Google Scholar 

  • Patil C.D., Borase H.P., Patil S.V., Salunkhe R.B. & Salunke B.K. 2012. Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes ae-gypti and Anopheles stephensi and non-target fish Poecillia reticulata. Parasitol. Res. 111: 555–562.

    Article  PubMed  Google Scholar 

  • Perez C., Paul M. & Bazerque P. 1990. Antibiotic assay by agar well diffusion method. Acta Biol. Med. Exp. 15: 113–115.

    Google Scholar 

  • Porob S., Nayak S., Fernandes A., Padmanabhan P., Patil B.A., Meena R.M. & Ramaiah N. 2013. PCR screening for the sur-factin (sfp) gene in marine Bacillus strains and its molecular characterization from Bacillus tequilensis NIO11. Turk. J. Biol. 37: 212–221.

    CAS  Google Scholar 

  • Priyadarshini K.A., Murugan K., Panneerselvam C., Ponarulselvam S., Hwang J.S. & Nicoletti M. 2012. Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol. Res. 111: 997–1006.

    Article  PubMed  Google Scholar 

  • Priyadarshini S., Gopinath V., Priyadharsshini N.M., Ali D.M. & Velusamy P. 2013. Synthesis of anisotropic silver nanopar-ticles using novel strain, Bacillus flexus and its application. Colloids Surf. B Biointerfaces 102: 232–237.

    Article  CAS  PubMed  Google Scholar 

  • Raja C.E. & Omine K. 2012. Arsenic, boron and salt resistant Bacillus safensis MS11 isolated from Mongolia desert soil. Afr. J. Biotechnol. 11: 2267–2275.

    CAS  Google Scholar 

  • Rajarathinam M., Dhanpal D., Morukattu G., Joseph S. & Thangavelu K.P. 2014. Imparting potential antimicrobial and antifungal activities to water based interior paint using nanoparticles of silver as an additive - an eco-friendly approach. Adv. Sci. Eng. Med. 6: 676–682.

    Article  CAS  Google Scholar 

  • Raliya R. & Tarafdar J.C. 2014. Biosynthesis and characterization of zinc, magnesium and titanium nanoparticles: an eco-friendly approach. Int. Nano Lett. 4: 1–10.

    Article  CAS  Google Scholar 

  • Reza K.M., Ashrafalsadat N., Reza R.M., Taher N. & Ali N. 2014. Isolation and molecular identification of extracellular lipase-producing Bacillus species from soil. Annals Biol. Res. 5: 132–139.

    CAS  Google Scholar 

  • Roohi A., Ahmed I., Khalid N., Iqbal M. & Jamil M. 2014. Isolation and phylogenetic identification of halotolerant/halophilic bacteria from the salt mines of Karak, Pakistan. Int. J. Agric. Biol. 16: 564–570.

    CAS  Google Scholar 

  • Roopan S.M., Madhumitha G., Rahuman A.A., Kamaraj C., Bharathi A. & Surendra T.V. 2013. Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Ind. Crops Prod. 43: 631–635.

    Article  CAS  Google Scholar 

  • Salem W.M., Haridy M., Sayed W.F. & Hassan N.H. 2014. Antibacterial activity of silver nanoparticles synthesized from latex and leaf extract of Ficus sycomorus. Ind. Crops Prod. 62: 228–234.

    Article  CAS  Google Scholar 

  • Samadi N., Golkaran D., Eslamifar A., Jamalifar H., Fazeli M.R. & Mohseni F.A. 2009. Intra/extracellular biosynthesis of silver nanoparticles by an autochtonous strain of Proteus mirabilis isolated from photographic waste. J. Biomed. Nan-otechnol. 5: 247–253.

    Article  CAS  Google Scholar 

  • Satomi M., Myron T., Duc L. & Venkateswaran K. 2006. Bacillus safensis sp. nov., isolated from spacecraft and assembly-facility surfaces. Int. J. Syst. Evol. Microbiol. 56: 1735–1740.

    Article  CAS  PubMed  Google Scholar 

  • Shameli K., Ahmad M.B., Zargar M., Wan Yunus W.M.Z., Ibrahim N.A., Shabanzadeh P. & Ghaffari-Moghadam M. 2011. Synthesis and characterization of silver/montmoril-lonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity. Int. J. Nanomed. 6: 271–284.

    Article  CAS  Google Scholar 

  • Shankar S., Jaiswal L., Aparna R.S.L. & Prasad R.G.S.V. 2014. Synthesis, characterization, in vitro biocompatibility, and antimicrobial activity of gold, silver and gold silver alloy nanoparticles prepared from Lansium domesticum fruit peel extract. Mater. Lett. 137: 75–78.

    Article  CAS  Google Scholar 

  • Shanmugam C., Sivasubramanian G., Parthasarathi B., Baskaran K., Balachander R. & Parameswaran V.R. 2015. Antimicrobial, free radical scavenging activities and catalytic oxidation of benzyl alcohol by nano-silver synthesized from the leaf extract of Aristolochia indica L.: a promenade towards sustain-ability. Appl. Nanosci. (in press) http://dx.doi.org.10.1007/s13204-015-0477-8.

    Google Scholar 

  • Shanmugam N., Rajkamal P., Cholan S., Kannadasan N., Sathishkumar K., Viruthagiri G. & Sundaramanickam A. 2014. Biosynthesis of silver nanoparticles from the marine seaweed Sargassum wightii and their antibacterial activity against some human pathogens. Appl. Nanosci. 4: 881–888.

    Article  CAS  Google Scholar 

  • Singh R.S., Singh R.P. & Yadav M. 2013. Molecular and biochemical characterization of a new endoinulinase producing bacterial strain of Bacillus safensis AS-08. Biologia 68: 1028–2013.

    CAS  Google Scholar 

  • Thirumurugan A., Tomy N.A., Kumar H.P. & Prakash P. 2011. Biological synthesis of silver nanoparticles by Lantana ca-mara leaf extracts. Int. J. Nanomat. Biostruct. 1: 22–24.

    Google Scholar 

  • Williams B.W., Cuverlier M.E. & Berset C. 1995. Use of free radical method to evaluate antioxidant activity. Food Sci. Technol. LWT 28: 25–30.

    Article  Google Scholar 

  • Zaki S., El-Kady M.F. & Abd-El-Haleem D. 2011. Biosynthesis and structural characterization of silver nanoparticles from bacterial isolates. Mater. Res. Bull. 46: 1571–1576.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agbaje Lateef.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lateef, A., Ojo, S.A., Akinwale, A.S. et al. Biogenic synthesis of silver nanoparticles using cell-free extract of Bacillus safensis LAU 13: antimicrobial, free radical scavenging and larvicidal activities. Biologia 70, 1295–1306 (2015). https://doi.org/10.1515/biolog-2015-0164

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2015-0164

Key words

Navigation