Skip to main content

Advertisement

Log in

Study on the Geometric and Electronic Structures of Al n Si m (n = 3, 4, 5; m = 1, 2, 3, 4) Clusters

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Genetic algorithm combined with the semi-empirical Hamitonian AM1/PM3 is used to search the low energy isomers of Al n Si m (n = 3, 5, m ≤ 3 and n = 4, m ≤ 4) and the charged clusters with 20 and 28 valence electrons. The candidate structures were optimized by the density functional theory PBE0 and B3LYP models with the triply split basis sets including polarization functions. The electronic structures show that Al–Si binary clusters behave like metal clusters. The molecular orbitals accord with that predicted by the jellium model, and the electron localization function shows the valence electrons are delocalized over the entire clusters. The clusters having 20 and 28 valence electrons exhibit pronounced stabilities and large energy gaps. The 20 valence electrons of Al4Si2 and Al3Si3 +, Al5Si form closed shells 1S 21P 62S 21D 10. Al4Si4 and Al5Si3 have oblate structures and the P, D, F levels spilt considerably in these clusters. The electron density distributions suggest that doping silicon in the aluminum clusters enhances the stability considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. W. Castleman and S. N. Khanna (2009). J. Phys. Chem. C 113, 2664.

    Article  CAS  Google Scholar 

  2. S. A. Claridge, A. W. Castleman, S. N. Khanna, C. B. Murry, A. Sen, and P. S. Weiss (2009). Acs Nano. 3, 244.

    Article  CAS  Google Scholar 

  3. P. Jena and S. N. Khanna (1996). Mater. Sci. Eng. A Struct. 217, 218.

    Article  Google Scholar 

  4. A. Perez, P. Melinon, V. Dupuis, P. Jensen, B. Prevel, J. Tuaillon, L. Bardotti, C. Martet, M. Treilleux, M. Broyer, M. Pellarin, J. L. Vaille, B. Palpant, and J. Lerme (1997). J. Phys. D Appl. Phys. 30, 709.

    Article  CAS  Google Scholar 

  5. W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou, and M. L. Cohen (1984). Phys. Rev. Lett. 52, 2141.

    Article  CAS  Google Scholar 

  6. W. D. Knight, W. A. de Heer, K. Clemenger, and W. A. Saunders (1985). Solid State Commun. 53, 445.

    Article  CAS  Google Scholar 

  7. M. L. Cohen, M. Y. Chou, W. D. Knight, and W. A. de Heer (1987). J. Phys. Chem. 91, 3141.

    Article  CAS  Google Scholar 

  8. W. A. de Heer (1993). Rev. Mod. Phys. 65, 611.

    Article  Google Scholar 

  9. M. Brack (1993). Rev. Mod. Phys. 65, 677.

    Article  CAS  Google Scholar 

  10. R. O. Jones (1991). Phys. Rev. Lett. 67, 224.

    Article  CAS  Google Scholar 

  11. R. O. Jones (1993). J. Chem. Phys. 99, 1194.

    Article  CAS  Google Scholar 

  12. B. K. Rao and P. Jena (1999). J. Chem. Phys. 111, 1890.

    Article  CAS  Google Scholar 

  13. A. Datta and S. K. Pati (2004). J. Phys. Chem. A 108, 9527.

    Article  CAS  Google Scholar 

  14. S. Paranthaman, K. Hong, J. Kim, D. E. Kim, and T. K. Kim (2013). J. Phys. Chem. A 117, 9293.

    Article  CAS  Google Scholar 

  15. X. Li, H. B. Wu, X. B. Wang, and L. S. Wang (1998). Phys. Rev. Lett. 81, 1909.

    Article  CAS  Google Scholar 

  16. R. Ahlrichs and S. D. Elliott (1999). Phys. Chem. Chem. Phys. 1, 13.

    Article  CAS  Google Scholar 

  17. B. Baguenard, M. Pellarin, J. Lermé, J. L. Vialle, and M. Broyer (1994). J. Chem. Phys. 100, 754.

    Article  CAS  Google Scholar 

  18. S. H. Yang, D. A. Drabold, J. B. Adams, and A. Sachdev (1993). Phys. Rev. B 47, 1567.

    Article  CAS  Google Scholar 

  19. D. E. Bergeron, A. W. Castleman, T. Morisato, and S. N. Khanna (2004). Science 304, 84.

    Article  CAS  Google Scholar 

  20. J. Akola, M. Manninen, H. Häkkinen, U. Landman, X. Li, and L. S. Wang (2000). Phys. Rev. B 62, 13216.

    Article  CAS  Google Scholar 

  21. D. M. Cox, D. J. Trevor, R. L. Whetten, E. A. Rohlfing, and A. Kaldor (1986). J. Chem. Phys. 84, 4651.

    Article  CAS  Google Scholar 

  22. W. A. de Heer, P. Milani, and A. Chatelain (1989). Phys. Rev. Lett. 63, 2834.

    Article  Google Scholar 

  23. B. T. Cooper, D. Parent, and S. W. Buckner (1998). Chem. Phys. Lett. 284, 401.

    Article  CAS  Google Scholar 

  24. J. Akola, M. Manninen, H. Häkkinen, U. Landman, X. Li, and L. S. Wang (1999). Phys. Rev. B 60, R11297.

    Article  CAS  Google Scholar 

  25. C. E. Moore, in Atomic Energy Levels, Natl. Bur. Stand. (U.S.) Circ. (U.S. GPO, Washington, D.C., 1971), Vol. I.

  26. E. Osorio, A. Vasquez, E. Florez, F. Mondragon, K. J. Donald, and W. Tiznado (2013). P Phys. Chem. Chem. Phys. 15, 2222.

    Article  CAS  Google Scholar 

  27. Z. Luo, C. J. Grover, A. C. Reber, S. N. Khanna, and A. W. Castleman (2013). J. Am. Chem. Soc. 135, 4307.

    Article  CAS  Google Scholar 

  28. H. Wang, Y. J. Ko, X. X. Zhang, G. Gantefoer, H. Schnoeckel, B. W. Eichhorn, P. Jena, B. Kiran, A. K. Kandalam, and K. H. Bowen (2014). J. Chem. Phys. 140, 124309.

    Article  Google Scholar 

  29. B. K. Rao and P. Jena (2001). J. Chem. Phys 115, 778.

    Article  CAS  Google Scholar 

  30. X. G. Gong and V. Kumar (1993). Phys. Rev. Lett. 70, 2078.

    Article  CAS  Google Scholar 

  31. O. P. Charkin, D. O. Charkin, N. M. Klimenko, and A. M. Mebel (2002). Chem. Phys. Lett. 365, 494.

    Article  CAS  Google Scholar 

  32. S. Nigam, C. Majumder, and S. K. Kulshreshtha (2004). J. Chem. Phys. 121, 7756.

    Article  CAS  Google Scholar 

  33. C. Majumder and S. K. Kulshreshtha (2004). Phys. Rev. B 69, 115432.

    Article  Google Scholar 

  34. B. X. Li, G. Y. Wang, M. Y. Ye, G. C. Yang, and C. H. Yao (2007). J. Mol. Struct Theochem. 820, 128.

    Article  CAS  Google Scholar 

  35. S. C. Zhan, B. X. Li, and J. S. Yang (2007). Physica B 387, 421.

    Article  CAS  Google Scholar 

  36. W. F. Ding and B. X. Li (2009). J. Mol. Struct Theochem. 897, 129.

    Article  CAS  Google Scholar 

  37. A. Arab and M. Habibzadeh (2016). J. Nanostruct. Chem. 6, 111.

    Article  CAS  Google Scholar 

  38. S. Chacko, M. Deshpande, and D. G. Kanhere (2001). Phys. Rev. B 64, 155409.

    Article  Google Scholar 

  39. G. H. Wang (2000). Prog. Phys. 20, 52–92.

    CAS  Google Scholar 

  40. J. J. Zhao and R. H. Xie (2004). J. Comput. Theor. Nanosci 1, 117.

    Article  CAS  Google Scholar 

  41. R. L. Johnston (2003). Dalton Trans. 22, 4193.

    Article  Google Scholar 

  42. J. J. Zhao, X. M. Huang, R. L. Shi, L. L. Tang, Y. Su, and L. W. Sai (2015). Chem. Model. 12, 249.

    Google Scholar 

  43. J. J. P. Stewart (1990). J. Comput. Aided Mol. Des. 4, 1.

    Article  Google Scholar 

  44. E. Anders, R. Koch, and P. Freunscht (1993). J. Comput. Chem. 14, 1301.

    Article  CAS  Google Scholar 

  45. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, et al. (1985). J. Am. Chem. Soc. 107, 3902.

    Article  CAS  Google Scholar 

  46. J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.

    Article  CAS  Google Scholar 

  47. B. Delley (1990). J. Chem. Phys. 92, 508.

    Article  CAS  Google Scholar 

  48. B. Delley (2000). J. Chem. Phys. 113, 7756.

    Article  CAS  Google Scholar 

  49. A. D. Becke (1993). J. Chem. Phys. 98, 5648.

    Article  CAS  Google Scholar 

  50. F. Weigend and R. Ahlrichs (2005). Phys. Chem. Chem. Phys. 7, 3297.

    Article  CAS  Google Scholar 

  51. M. J. Frisch, G. W. Trucks, and H. B. Schlegel, et al. (2009). Gaussian 09, Revision D. 01 (Gaussian Inc., Wallingford).

  52. K. Clemenger (1985). Phys. Rev. B 32, 1359.

    Article  CAS  Google Scholar 

  53. A. D. Becke and K. E. Edgecombe (1990). J. Chem. Phys. 92, 5397.

    Article  CAS  Google Scholar 

  54. B. Silvi and A. Savin (1994). Nature 371, 683.

    Article  CAS  Google Scholar 

  55. A. Savin, R. Nesper, S. Wengert, and T. F. Fässler (1997). Angew. Chem. Int. Ed. 36, 1808.

    Article  CAS  Google Scholar 

  56. T. Lu and F. W. Chen (2012). J. Comput. Chem. 33, 580.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation of China (NSFC) (Grant Nos. 11164024 and 11164034). We also thank Gansu and Shenzhen Computing Center for computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongshan Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 256 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, M., Du, N. & Chen, H. Study on the Geometric and Electronic Structures of Al n Si m (n = 3, 4, 5; m = 1, 2, 3, 4) Clusters. J Clust Sci 29, 141–150 (2018). https://doi.org/10.1007/s10876-017-1305-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1305-y

Keywords

Navigation