Skip to main content
Log in

Self-assembly of 1D Coordination Polymers Containing Copper(I) tert-butylthiolato Clusters: Structural Characterization and Properties

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The solvothermal reactions of copper(I) tert-butylthiolate (CuStBu) with 1/3 equiv. of dppe [dppe = bis(diphenylphosphino)ethane] or bix [bix = 1,4-bis(imidalzole-1-ylmethyl)benzene] in CH3CN led to the formation of two cluster-based coordination polymers [(CuStBu)4(dppe)] n (1) and [(CuStBu)6(bix)] n (2). Single-crystal X-ray diffraction studies reveal that 1 and 2 feature 1D zigzag polymeric chains which contain rare (CuStBu)4 or (CuStBu)6 clusters as connecting junctions and dppe or bix as linkers. The title compounds show optical transitions with band gaps of ∼3.18 eV for 1 and ∼2.81 eV for 2. Compounds 1 and 2 exhibit strong photoluminescence with the peaks maximum at 603 and 629 nm respectively.

Graphical Abstract

Two 1D zigzag polymers [(CuStBu)4(dppe)] n (1) and [(CuStBu)6(bix)] n (2) [dppe = bis(diphenylphosphino) ethane] or bix [bix = 1,4-bis(imidalzole-1-ylmethyl)benzene] have been synthesized by solvothermal reactions using copper(I) tert-butylthiolate CuStBu as the starting material. Compounds 1 and 2 contain rare (CuStBu)4 and (CuStBu)6 clusters as connecting nodes and dppe or bix as bridging ligands. The title compounds show optical transitions with band gaps of ∼3.18 eV for 1 and ∼2.81 eV for 2. Both 1 and 2 exhibit strong photoluminescence with the peak maximums at 603 and 629 nm, respectively.

The 1D zigzag polymer of [(CuStBu)6(bix)] n (2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V. W. W. Yam, C. H. Lam, W. K. M. Fung and K. K. Cheung (2001), Inorg. Chem. 40, 3435.

    Article  CAS  Google Scholar 

  2. E. I. Solomon, D. W. Randall and T. Glaser (2000), Coord. Chem. Rev. 595, 200.

    Google Scholar 

  3. G. Henkel and B. Krebs (2004), Chem. Rev. 104, 181.

    Article  Google Scholar 

  4. M. D. Janssen, D. M. Grove and G. van Koten (1997), Prog. Inorg. Chem. 46, 97.

    Article  CAS  Google Scholar 

  5. P. Zhou and D. Thiele (1993), J. BioFactors 4, 105.

    CAS  Google Scholar 

  6. W. E. Rauser (1990), Annu. Rev. Biochem. 59, 61.

    Article  CAS  Google Scholar 

  7. S. Schneider, J. A. S. Roberts, M. R. Salata and T. J. Marks (2006), Angew. Chem. Int. Ed. 45, 1733.

    Article  CAS  Google Scholar 

  8. S. Schneider, A. Dzudza, G. Raudaschl-Sieber and T. J. Marks (2007), Chem. Mater. 19, 2768.

    Article  CAS  Google Scholar 

  9. S. Schneider, Y. Yang and T. J. Marks (2005), Chem. Mater. 17, 4286.

    Article  CAS  Google Scholar 

  10. K. Fujisawa, S. Imai, N. Kitajima and Y. Moro-oka (1998), Inorg. Chem. 37, 168.

    Article  CAS  Google Scholar 

  11. Q. C. Yang, K. T. Kang, H. Liao, Y. Z. Han, Z. G. Chen and Y. Q. Tang (1987), J. Chem. Soc., Chem. Commun. 1076.

  12. I. G. Dance (1976), J. Chem. Soc., Chem. Commun. 103.

  13. I. G. Dance (1976), J. C. Calabrese, 19, L41.

    Google Scholar 

  14. I. G. Dance, G. A. Bowmaker, G. R. Clark and J. K. Seadon (1983), Polyhedron. 2, 1031.

    Article  CAS  Google Scholar 

  15. K. L. Tang, T. B. Xia, X. L. Jin and Y. Q. Tang (1993), Polyhedron. 12, 2895.

    Article  CAS  Google Scholar 

  16. M. Baumgartner, H. Schmalle and E. Dubler (1990), Polyhedron. 9, 1155.

    Article  CAS  Google Scholar 

  17. R. K. Chadha, R. Kumer and D. G. Tuck (1988), Polyhedron. 7, 1121.

    Article  CAS  Google Scholar 

  18. M. Baumgartner, W. Bensch, P. Hug and E. Dubler (1987), Inorg. Chim. Acta. 136, 139.

    Article  CAS  Google Scholar 

  19. I. G. Dance (1976), J. Chem. Soc., Chem. Commun. 68.

  20. R. Chadha, R. Kumar and D. G. Tuck (1986), J. Chem. Soc., Chem. Commun. 188.

  21. G. A. Bowmaker, G. R. Clark, J. K. Seadon and I. G. Dance (1984), Polyhedron. 3, 535.

    Article  CAS  Google Scholar 

  22. M. A. Khan, R. Kumar and D. G. Tuck (1988), Polyhedron. 7, 49.

    Article  CAS  Google Scholar 

  23. M. Baumgartner, H. Schmalle and C. Baerlocher (1993), J. Solid. State. Chem. 107, 63.

    Article  CAS  Google Scholar 

  24. I. G. Dance (1988), Polyhedron. 7, 2205.

    Article  CAS  Google Scholar 

  25. N. F. Zheng, X. H. Bu and P. Y. Feng (2002), J. Am. Chem. Soc. 124, 9688.

    Article  CAS  Google Scholar 

  26. P. Y. Feng, X. H. Bu and N. F. Zheng (2005), Acc. Chem. Res. 38, 293.

    Article  CAS  Google Scholar 

  27. R. Burth, M. Gelinsky and H. Vahrenkamp (1998), Inorg. Chem. 37, 2833.

    Article  CAS  Google Scholar 

  28. M. J. Manos, R. G. Iyer, E. Quarez, J. H. Liao and M. G. Kanatzidis (2005), Angew. Chem., Int. Ed. 44, 3552.

    Article  CAS  Google Scholar 

  29. J. L. Xie, X. H. xie, N. F. Zheng and P. Y. Feng (2005), Chem. Commun. 4916. .

  30. Z. H. Li, S. W. Du and X. T. Wu (2004), J. Chem. Soc., Dalton Trans. 2438.

  31. Z. H. Li, S. W. Du and X. T. Wu (2005), Polyhedron. 24, 2988.

    Article  CAS  Google Scholar 

  32. B. F. Hoskins, R. Robson and D. A. Slizys (1997), J. Am. Chem. Soc. 119, 2952.

    Article  CAS  Google Scholar 

  33. a) G. Kotüm (1989) Reflectance Spectroscopy (Springer-Verlag, New York), (b) W. W. Wendlandt and H. G. Hecht (1966) Reflectance Spectroscopy (Interscience Publishers, New York).

  34. G. Cao, L. K. Rabenberg, C. M. Nunn and T. E. Mallouk (1991), Chem. Mater. 3, 149.

    Article  CAS  Google Scholar 

  35. J. D. Lin, Z. H. Li, T. Li, J. R. Li and S. W. Du (2006), Inorg. Chem. Commun. 9, 675.

    Article  CAS  Google Scholar 

  36. L. Song, P. Lin, Z. H. Li, J. R. Li, S. W. Du and X. T. Wu (2007), Polyhedron. 26, 1199.

    Article  CAS  Google Scholar 

  37. V. W. W. Yam, K. K. W. Lo, W. K. M. Fung and C. R. Wang (1998), Coord. Chem. Rev. 171, 17.

    Article  CAS  Google Scholar 

  38. P. C. Ford, E. Cariati and J. Bourassa (1999), Chem. Rev. 99, 3625.

    Article  CAS  Google Scholar 

  39. C. Kutal (1990), Coord. Chem. Rev. 99, 213.

    Google Scholar 

  40. J. K. Cheng, Y. G. Yao, J. Zhang, Z. J. Li, Z. W. Cai, X. Y. Zhang, Z. N. Chen, Y. B. Chen, Y. Kang, Y. Y. Qin and Y. H. Wen (2004), J. Am. Chem. Soc. 126, 7796.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), National Basic Research Program of China (973 Program, 2007CB815306), the National Science Foundation of China (20333070 & 20673117) and the Young Scientist’s Foundation of Fujian Province (2006F3136) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaowu Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Li, X., Lin, P. et al. Self-assembly of 1D Coordination Polymers Containing Copper(I) tert-butylthiolato Clusters: Structural Characterization and Properties. J Clust Sci 19, 357–366 (2008). https://doi.org/10.1007/s10876-007-0161-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-007-0161-6

Keywords

Navigation