Skip to main content

Advertisement

Log in

Biomass and trophic structure of the plankton community in subtropical and temperate waters of the northwestern Pacific Ocean

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

This study examined the biomass structure of autotrophic and heterotrophic plankton along a trophic gradient in the northwestern Pacific Ocean in an attempt to understand planktonic food web structure. Autotrophic biomass exceeded that of heterotrophic organisms in all sampling regions, but with lesser contribution to total planktonic biomass at stations of higher phytoplankton biomass, including the northern East China Sea, compared to the regions of lower phytoplankton biomass. The proportion of the biomass of heterotrophic bacteria, nanoflagellates (HNF), and dinoflagellates (HDF) relative to that of phytoplankton was all inversely related to phytoplankton biomass, but positive relationships were observed for both ciliates and mesozooplankton. Mesozooplankton biomass inclined greater than phytoplankton along the gradient of phytoplankton biomass, with biomass rise being most closely associated with ciliate and HDF biomass and, to a lesser degree, with large phytoplankton (>3 μm). Both bacteria and picophytoplankton were significantly and positively related to the biomass ratio of mesozooplankton to the sum of HDF and ciliates (i.e., proxy of mesozooplankton predation on protozoans), but no positive relationship was apparent either for HNF or for large phytoplankton. Such relationships may result from predation relief on lower food webs associated with mesozooplankton feeding on protistan plankton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  Google Scholar 

  • Ara K (2001) Length–weight relations and chemical content of the planktonic copepods in the Cananeia lagoon estuarine system, Sao Paulo, Brazil. Plankton Biol Ecol 48:35–45

    Google Scholar 

  • Baines SB, Pace ML, Karl DM (1994) Why does the relationship between sinking flux and planktonic primary production differ between lakes and oceans? Limnol Oceanogr 39:213–226

    Article  Google Scholar 

  • Banse K (1995) Zooplankton: pivotal role in the control of ocean production. ICES J Mar Sci 52:265–277

    Article  Google Scholar 

  • Blanchot J, André JM, Navarette C, Neveux J, Radenac M-H (2001) Picophytoplankton in the equatorial Pacific: vertical distributions in the warm pool and in the high nutrient low chlorophyll conditions. Deep Sea Res I 48:297–314

    Article  Google Scholar 

  • Bollens G, Gifford SM, Slaughter AM, Bollens SM (2005) Microzooplankton in the northern San Francisco estuary: important food resources but minimal phytoplankton grazers. ALSO, Salt Lake City

    Google Scholar 

  • Bøsheim KY, Bratbak G (1987) Cell volume to cell carbon conversion factors for a bacterivorus Monas sp. enriched from sea waters. Mar Ecol Prog Ser 36:171–175

    Article  Google Scholar 

  • Bouley P, Kimmerer WJ (2006) Ecology of a highly abundant, introduced cyclopoid copepod in a temperate estuary. Mar Ecol Prog Ser 324:219–228

    Article  Google Scholar 

  • Calbet A, Landry MR (1999) Mesozooplankton influences on the microbial food web: direct and indirect trophic interactions in the oligotrophic open ocean. Limnol Oceanogr 44:1370–1380

    Article  Google Scholar 

  • Calbet A, Trepat I, Almeda R, Salo V, Saiz E, Movilla JI, Alcaraz M, Yebra L, Simo R (2008) Impact of micro-and nanograzers on phytoplankton assessed by standard and size-fractionated dilution grazing experiments. Aquat Microb Ecol 50:145–156

    Article  Google Scholar 

  • Caron DA, Dam HG, Kremer P, Lessard EJ, Madin LP, Malone TC, Napp JM, Peele ER, Roman MR, Youngbluth MJ (1995) The contribution of microorganisms to particulate carbon and nitrogen in surface waters of the Sargasso Sea near Bermuda. Deep-Sea Res I 42:943–972

    Article  Google Scholar 

  • Chen B, Liu H (2010) Relationships between phytoplankton growth and cell size in surface oceans: interactive effects of temperature, nutrients, and grazing. Limnol Oceanogr 55:965–972

    Article  Google Scholar 

  • Chen Y-LL, Chen H-Y, Gong G-C, Lin Y-H, Jan S, Takahashi M (2004) Phytoplankton production during a summer coastal upwelling in the East China Sea. Cont Shelf Res 24:1321–1338

    Article  Google Scholar 

  • Cho BC, Azam F (1990) Biogeochemical significance of bacterial biomass in the ocean’s euphotic zone. Mar Ecol Prog Ser 63:253–259

    Article  Google Scholar 

  • Christian JR, Karl DM (1994) Microbial community structure at the U.S.-Joint Global Ocean Flux Study Station ALOHA: inverse methods for estimating biochemical indicator ratios. J Geophys Res 99:14269–14276

    Article  Google Scholar 

  • Chuang W-S, Li H-W, Tang T, Wu C-K (1993) Observations of the countercurrent on the inshore side of the Kuroshio northeast of Taiwan. J Oceanogr 49:581–592

    Article  Google Scholar 

  • Edler L (1979) Phytoplankton and chlorophyll recommendations for biological studies in the Baltic Sea: phytoplankton and chlorophyll. Baltic Mar Biol Publ 5:1–38

    Google Scholar 

  • Gasol J, Del Giorgio P, Duarte C (1997) Biomass distribution in marine planktonic communities. Limnol Oceanogr 42:1353–1363

    Article  Google Scholar 

  • Gifford D (1985) Laboratory culture of marine planktonic oligotrichs (ciliophora, oligotrichida). Mar Ecol Prog Ser 23:257–267

    Article  Google Scholar 

  • Gong G-C, Lee Chen Y-L, Liu K–K (1996) Chemical hydrography and chlorophyll a distribution in the East China Sea in summer: implications in nutrient dynamics. Cont Shelf Res 16:1561–1590

    Article  Google Scholar 

  • Gundersen K, Heldal M, Norland S, Purdie DA, Knap AH (2002) Elemental C, N, and P Cell Content of Individual Bacteria Collected at the Bermuda Atlantic Time-Series Study (BATS) Site. Limnol Oceanogr 47:1525–1530

    Article  Google Scholar 

  • Haury LR (1988) Vertical distribution of Pleuromamma (copepoda: Metridinidae) across the eastern north Pacific Ocean. Hydrobiologia 167(168):335–342

    Article  Google Scholar 

  • Huo Y-Z, Wang S-W, Sun S, Li C-L, Liu M-T (2008) Feeding and egg production of the planktonic copepod Calanus sinicus in spring and autumn in the Yellow Sea, China. J Plankton Res 30:723–734

    Article  Google Scholar 

  • Ishizaka J, Kiyosawa H, Ishida K, Ishikawa K, Takahashi M (1994) Meridional distribution and carbon biomass of autotrophic picoplankton in the central north Pacific Ocean during late northern summer 1990. Deep-Sea Res I 41:1745–1766

    Article  Google Scholar 

  • Iversen M, Poulsen L (2007) Coprorhexy, coprophagy, and coprochaly in the copepods Calanus helgolandicus, Pseudocalanus elongatus, and Oithona similis. Mar Ecol Prog Ser 350:79–89

    Article  Google Scholar 

  • Jang M-C, Shin K, Lee T, Noh I (2010) Feeding selectivity of calanoid copepods on phytoplankton in Jangmok Bay, south coast of Korea. J Ocean Sci 45:101–111

    Article  Google Scholar 

  • Jens CN, Lars-Johan N, Andrey S (2001) Correcting for underestimation of microzooplankton grazing in bottle incubation experiments with mesozooplankton. Mar Ecol Prog Ser 221:59–75

    Article  Google Scholar 

  • Jochem FJ (2003) Photo- and heterotrophic pico- and nanoplankton in the Mississippi River plume: distribution and grazing activity. J Plankton Res 25:1201–1214

    Article  Google Scholar 

  • Johnson PW, Sieburth JM, Xu H-S (1979) The utilization of crococcoid cyanobacteria by marine protozooplankters but not by calanoid copepods. Ann Inst Oceanogr 58:297–305

    Google Scholar 

  • Jonsson PR, Tiselius P (1990) Feeding behaviour, prey detection and capture efficiency of the copepod Acartia tonsa feeding on planktonic ciliates. Mar Ecol Prog Ser 60:35–44

    Article  Google Scholar 

  • Kawasaki N, Sohrin R, Ogawa H, Nagata T, Benner R (2011) Bacterial carbon content and the living and detrital bacterial contributions to suspended particulate organic carbon in the North Pacific Ocean. Aquat Microb Ecol 62:165–176

    Article  Google Scholar 

  • Klein Breteler WCM, Schogt N, Baas M, Schouten S, Kraay GW (1999) Trophic upgrading of food quality by protozoans enhancing copepod growth: role of essential lipids. Mar Biol 135:191–198

    Article  Google Scholar 

  • Ko AR, Ju S-J, Lee C-R (2009) The physiological and ecological comparisons between warm (Pleuromamma sp.) and cold water copepod species (Neocalanus plumchrus) in the northwestern Pacific Ocean using lipid contents and compositions. Ocean Polar Res 31:121–131

    Article  Google Scholar 

  • Landry MR, Calbet A (2004) Microzooplankton production in the oceans. ICES J Mar Sci 61:501–507

    Article  Google Scholar 

  • Lee S, Fuhrman JA (1987) Relationship between biovolume and biomass of naturally derived marine bacterioplakton. Appl Environ Microbiol 53:1298–1303

    Google Scholar 

  • Mackey DJ, Parslow J, Higgins HW, Griffiths FB, O’Sullivan JE (1995) Plankton productivity and biomass in the western equatorial Pacific: biological and physical controls. Deep-Sea Res II 42:499–533

    Article  Google Scholar 

  • Matsuno K, Yamaguchi A (2010) Abundance and biomass of mesozooplankton along north-south transects (165°E and 165°W) in summer in the North Pacific: an analysis with an optical plankton counter. Plankton Benthos Res 5:123–130

    Article  Google Scholar 

  • Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45:569–579

    Article  Google Scholar 

  • Nakamura Y, Turner JT (1997) Predation and respiration by the small cyclopoid copepod Oithona similis: how important is feeding on ciliates and heterotrophic flagellates? J Plankton Res 19:1275–1288

    Article  Google Scholar 

  • Nejstgaard JC, Gismervik I, Solberg PT (1997) Feeding and reproduction by Calanus finmarchicus, and microzooplankton grazing during mesocosm blooms of diatoms and the coccolithophore Emiliania huxleyi. Mar Ecol Prog Ser 147:197–217

    Article  Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon, New York

    Google Scholar 

  • Pérez V, Fernández E, Marañón E, Serret P, Varela R, Bode A, Varela M, Varela MM, Morán XAG, Woodward EMS, Kitidis V, García-Soto C (2005) Latitudinal distribution of microbial plankton abundance, production, and respiration in the Equatorial Atlantic in autumn 2000. Deep-Sea Res I 52:861–880

    Article  Google Scholar 

  • Poulsen LK, Kiørboe T (2006) Vertical flux and degradation rates of copepod fecal pellets in a zooplankton community dominated by small copepods. Mar Ecol Prog Ser 323:195–204

    Article  Google Scholar 

  • Putt M, Stoecker DK (1989) An experimentally determined carbon: volume ratio for marine ‘‘oligotrichous’’ ciliates from estuarine and coastal waters. Limnol Oceanogr 34:1097–1103

    Article  Google Scholar 

  • R Development Team (2006) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.Rproject.Org/

  • Rassoulzadegan F, Laval-Peuto M, Sheldon RW (1988) Partitioning of the food ration of marine ciliates between pico- and nanoplankton. Hydrobiologia 159:75–88

    Article  Google Scholar 

  • Roman MR, Gauzens AL (1997) Copepod grazing in the equatorial Pacific. Limnol Oceanogr 42:623–634

    Article  Google Scholar 

  • Roman MR, Dam HG, Gauzens AL, Urban-Rich J, Foley DG, Dickey TD (1995) Zooplankton variability on the equator at 140°W during the JGOFS EqPac study. Deep-Sea Res II 42:673–693

    Article  Google Scholar 

  • Roman MR, Dam HG, Le Borgne R, Zhang X (2002) Latitudinal comparisons of equatorial Pacific zooplankton. Deep-Sea Res II 49:2695–2711

    Article  Google Scholar 

  • Saiz E, Calbet A (2011) Copepod feeding in the ocean: scaling patterns, composition of their diet and the bias of estimates due to microzooplankton grazing during incubations. Hydrobiologia 666:181–196

    Article  Google Scholar 

  • Samuelsson K, Berglund J, Andersson A (2006) Factors structuring the heterotrophic flagellate and ciliate community along a brackish water primary production gradient. J Plankton Res 28:345–359

    Article  Google Scholar 

  • Sherr EB, Sherr BF (2002) Significance of predation by protists in aquatic microbial food webs. Antonie Leewenhoek Int J Gen Mol Microbiol 81:293–308

    Article  Google Scholar 

  • Sherr EB, Sherr BF (2007) Heterotrophic dinoflagellates: a significant component of microzooplankton biomass and major grazers of diatoms in the sea. Mar Ecol Prog Ser 352:187–197

    Article  Google Scholar 

  • Sherr EB, Sherr BF, Paffenhofer G (1986) Phagotrophic protozoa as food for metazoans: a “missing link” in marine pelagic food webs? Mar Microb Food Webs 1:61–80

    Google Scholar 

  • Sherr EB, Caron DA, Sherr EB (1993) Staining of heterotrophic protists for visualization via epifluorescence microscopy. In: Kemp PF, Sherr EB, Cole JJ (eds) Hand book of methods in aquatic microbial ecology. Lewis, Boca Raton, pp 213–227

    Google Scholar 

  • Stoecker DK, Capuzzo JM (1990) Predation on protozoa: its importance to zooplankton. J Plankton Res 12:891–908

    Article  Google Scholar 

  • Stoecker DK, Gifford DJ, Putt M (1994) Preservation of marine planktonic ciliates: losses and cell shrinkage during fixation. Mar Ecol Prog Ser 110:293–299

    Article  Google Scholar 

  • Strom SL, Macri EL, Olson NB (2007) Microzooplankton grazing in the coastal Gulf of Alaska: variations in top-down control of phytoplankton. Limnol Oceanogr 52:1480–1494

    Article  Google Scholar 

  • Takahashi M, Bienfang PK (1983) Size structure of phytoplankton biomass and photosynthesis in subtropical Hawaiian waters. Mar Biol 76:203–211

    Article  Google Scholar 

  • Tang KW, Taal M (2005) Trophic modification of food quality by heterotrophic protists: species-specific effects on copepod egg production and egg hatching. J Exp Mar Biol Ecol 31:85–98

    Article  Google Scholar 

  • Tirelli V, Mayzaud P (2005) Relationship between functional response and gut transit time in the calanoid copepod Acartia clausi: role of food quantity and quality. J Plankton Res 27:557–568

    Article  Google Scholar 

  • Turner JT (2004) The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool Stud 43:255–266

    Google Scholar 

  • Vargas CA, Gonzalez HE (2004) Plankton community structure and carbon cycling in a coastal upwelling system. II. Microheterotrophic pathway. Aquat Microb Ecol 34:165–180

    Article  Google Scholar 

  • Venables WN, Ripley BR (2003) Modern applied statistics with S, 4th edition. Springer, New York

  • Verity P (1985) Grazing, respiration, excretion, and growth rates of tintinnids. Limnol Oceanogr 30:1268–1282

    Article  Google Scholar 

  • Verity PG, Lagdon C (1984) Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. J Plankton Res 6:859–868

    Article  Google Scholar 

  • Wassmann P (1990) Relationship between primary and export production in the boreal coastal zone of the North Atlantic. Limnol Oceanogr 35:464–471

    Article  Google Scholar 

  • Yamaguchi A, Watanabe Y, Ishida H, Harimoto T, Furusawa K, Suzuki S, Ishizaka J, Ikeda T, Takahashi MM (2004) Latitudinal differences in the planktonic biomass and community structure down to the greater depths in the Western North Pacific. J Oceanogr 60:773–787

    Article  Google Scholar 

  • Yamaguchi A, Watanabe Y, Ishida H, Harimoto T, Maeda M, Ishizaka J, Ikeda T, Mac Takahashi M (2005) Biomass and chemical composition of net-plankton down to greater depths (0–5800 m) in the western North Pacific Ocean. Deep-Sea Res I 52:341–353

    Article  Google Scholar 

  • Yang EJ, Choi JK, Hyun JH (2008a) Seasonal variation in the community and size structure of nano-and microzooplankton in Gyeonggi Bay, Yellow Sea. Estuar Coast Shelf Sci 77:320–330

    Article  Google Scholar 

  • Yang EJ, Ju S-J, Kim WS (2008b) Regional comparisons of heterotrophic protists grazing impacts and community in Northwest Pacific Ocean. Ocean Polar Res 30:289–301

    Article  Google Scholar 

  • Yang EJ, Kang H-K, Yoo S, Hyun J-H (2009) Contribution of auto- and heterotrophic protozoa to the diet of copepods in the Ulleung Basin, East Sea/Japan Sea. J Plankton Res 31:647–659

    Article  Google Scholar 

  • Zarauz I, Irigoien X (2008) Effects of Lugol’s fixation on the size structure of natural nano-microplankton samples, analyzed by means of an automatic counting method. J Plankton Res 30:1297–1303

    Article  Google Scholar 

  • Zhang J, Liu SM, Ren JL, Wu Y, Zhang GL (2007) Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea Shelf. Prog Oceanogr 74:449–478

    Article  Google Scholar 

Download references

Acknowledgments

We are indebted to the captain and crew of the R/V Eardo, who were most helpful with all our shipboard operations. This work was supported by the KORDI project PE98731 and PM56600. E.J. Yang was supported by KOPRI project (PE10290).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Ku Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, CR., Choi, KH., Kang, HK. et al. Biomass and trophic structure of the plankton community in subtropical and temperate waters of the northwestern Pacific Ocean. J Oceanogr 68, 473–482 (2012). https://doi.org/10.1007/s10872-012-0111-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-012-0111-2

Keywords

Navigation