Skip to main content

Advertisement

Log in

Copepod feeding in the ocean: scaling patterns, composition of their diet and the bias of estimates due to microzooplankton grazing during incubations

  • ZOOPLANKTON ECOLOGY
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Here, we report insights from the compilation and analysis of data on marine calanoid copepod feeding rates in the ocean. Our study shows that food availability and body weight are major factors shaping copepod feeding rates in the field, with a relatively minor role of temperature. Although the maximal feeding rates of copepods that are observed in the field agree with the well-known 3/4 of body size scaling rule for animals, copepod feeding in the oceans is typically limited and departs from this rule. Ciliates and dinoflagellates appear to be highly relevant in the composition of copepod diets, and this represents an indirect increase in the flux of primary production that is likely to reach the upper trophic levels; this contribution is higher in the less productive systems and may help to explain accounts of proportionally higher standing stocks of copepods supported per unit of primary producer biomass in oligotrophic environments. Contrary to common belief, diatoms emerge from our dataset as small contributors to the diet of copepods, except in some very productive ecosystems. We have also evaluated the bias in the estimation of copepod grazing rates due to within-bottle trophic cascade effects caused by the removal of microheterotrophs by copepods. This release of microzooplankton grazing pressure accounts for a relevant, but moderate, increase in copepod grazing estimates (ca. 20–30%); this bias has an effect on both the carbon flux budgets through copepods and on our view of their diet composition. However, caution is recommended against the indiscriminate use of corrections because they may turn out to be overestimates of the bias. We advise that both uncorrected and corrected grazing rates should be provided in future studies, as they probably correspond to the lower and upper boundaries of the true grazing rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agis, M., A. Granda & J. R. Dolan, 2007. A cautionary note: examples of possible microbial community dynamics in dilution grazing experiments. Journal of Experimental Marine Biology and Ecology 341: 176–183.

    Article  Google Scholar 

  • Arendt, K. E., S. H. Jónasdóttir, P. J. Hansen & S. Gärtner, 2005. Effects of dietary fatty acids on the reproductive success of the calanoid copepod Temora longicornis. Marine Biology 146: 513–530.

    Article  CAS  Google Scholar 

  • Atienza, D., E. Saiz & A. Calbet, 2006. Feeding ecology of the marine cladoceran Penilia avirostris: natural diet, prey selectivity and daily ration. Marine Ecology Progress Series 315: 211–220.

    Article  Google Scholar 

  • Atkinson, A., 1996. Subantarctic copepods in an oceanic, low chlorophyll environment: ciliate predation, food selectivity and impact on prey populations. Marine Ecology Progress Series 130: 85–96.

    Article  Google Scholar 

  • Atkinson, D. & R. M. Sibly, 1997. Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends in Ecology & Evolution 12: 235–239.

    Article  CAS  Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10: 257–263.

    Article  Google Scholar 

  • Ban, S., C. Burns, J. Castel, Y. Chaudron, E. Christou, R. Escribano, S. F. Umani, S. Gasparini, F. Guerrero Ruiz, M. Hoffmeyer, A. Ianora, H.-K. Kang, M. Laabir, A. Lacoste, A. Miralto, X. Ning, S. Poulet, V. Rodriguez, J. Runge, J. Shi, M. Starr, S. Uye & Y. Wang, 1997. The paradox of diatom-copepod interactions. Marine Ecology Progress Series 157: 287–293.

    Article  Google Scholar 

  • Berggreen, U., B. Hansen & T. Kiørboe, 1988. Food size spectra, ingestion and growth of the copepod Acartia tonsa during development: implications for determination of copepod production. Marine Biology 99: 341–352.

    Article  Google Scholar 

  • Bonnet, D., 2001. Effet de la diversité nutritionnelle du microplancton sur le zooplankton: étude de processus démographiques et trophiques de copépodes marins dans des conditions de laboratoire et in situ. Ph. D. thesis, University of Paris 6, Paris, France.

  • Broglio, E., S. H. Jónasdóttir, A. Calbet, H. H. Jakobsen & E. Saiz, 2003. Effect of heterotrophic versus autotrophic food on feeding and reproduction of the calanoid copepod Acartia tonsa: relationship with prey fatty acid composition. Aquatic Microbial Ecology 31: 267–278.

    Article  Google Scholar 

  • Broglio, E., E. Saiz, A. Calbet, I. Trepat & M. Alcaraz, 2004. Trophic impact and prey selection by crustacean zooplankton on the microbial communities of an oligotrophic coastal area (NW Mediterranean). Aquatic Microbial Ecology 35: 65–78.

    Article  Google Scholar 

  • Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage & G. B. West, 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.

    Article  Google Scholar 

  • Calbet, A., 2001. Mesozooplankton grazing effect on primary production: a global comparative analysis in marine ecosystems. Limnology and Oceanography 46: 1824–1830.

    Article  Google Scholar 

  • Calbet, A., 2008. The trophic roles of microzooplankton in marine systems. ICES Journal of Marine Science 65: 325–331.

    Article  Google Scholar 

  • Calbet, A. & M. R. Landry, 2004. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnology and Oceanography 49: 51–57.

    Article  CAS  Google Scholar 

  • Calbet, A. & E. Saiz, 2005. The ciliate-copepod link in marine ecosystems. Aquatic Microbial Ecology 38: 157–167.

    Article  Google Scholar 

  • Calbet, A., I. Trepat, R. Almeda, V. Salo, E. Saiz, J. I. Movilla, M. Alcaraz, L. Yebra & R. Simo, 2008. Impact of micro- and nanograzers on phytoplankton assessed by standard and size-fractionated dilution grazing experiments. Aquatic Microbial Ecology 50: 145–156.

    Article  Google Scholar 

  • Cushing, D. H., 1989. A difference in structure between ecosystems in strongly stratified waters and in those that are only weakly stratified. Journal of Plankton Research 11: 1–13.

    Article  Google Scholar 

  • Dale, T. & P. H. Burkill, 1982. ‘Live counting’—a quick and simple technique for enumerating pelagic ciliates. Annales de l’Institut Oceanographique, Paris 58: 267–276.

    Google Scholar 

  • Dam, H. G. & W. T. Peterson, 1988. The effect of temperature on the gut clearance rate constant of planktonic copepods. Journal of Experimental Marine Biology and Ecology 123: 1–14.

    Article  Google Scholar 

  • Dam, H. G. & W. T. Peterson, 1991. In situ feeding behavior of the copepod Temora longicornis: effects of seasonal changes in chlorophyll size fractions and female size. Marine Ecology Progress Series 71: 113–123.

    Article  Google Scholar 

  • Dolan, J. R., 1991. Microphagous ciliates in mesohaline Chesapeake Bay waters: estimates of growth rates and consumption by copepods. Marine Biology 111: 303–309.

    Article  Google Scholar 

  • Dolan, J. R., C. L. Gallegos & A. Moigis, 2000. Dilution effects on microzooplankton in dilution grazing experiments. Marine Ecology Progress Series 200: 127–139.

    Article  CAS  Google Scholar 

  • Dutz, J., M. Koski & S. H. Jonasdottir, 2008. Copepod reproduction is unaffected by diatom aldehydes or lipid composition. Limnology and Oceanography 53: 225–235.

    Article  CAS  Google Scholar 

  • First, M. R., I. H. Miller, P. J. Lavrentyev, J. L. Pinckney & A. B. Burd, 2009. Effects of microzooplankton growth and trophic interactions on herbivory in coastal and offshore environments. Aquatic Microbial Ecology 54: 255–267.

    Article  Google Scholar 

  • Frost, B. W., 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnology and Oceanography 17: 805–815.

    Article  Google Scholar 

  • Gasol, J. M., P. A. del Giorgio & C. M. Duarte, 1997. Biomass distribution in marine planktonic communities. Limnology and Oceanography 42: 1353–1363.

    Article  CAS  Google Scholar 

  • Gifford, D. J., 1985. Laboratory culture of marine planktonic oligotrichs (Ciliophora, Oligotrichida). Marine Ecology Progress Series 23: 257–267.

    Article  Google Scholar 

  • Gifford, D. & M. J. Dagg, 1991. The microzooplankton-mesozooplankton link: consumption of planktonic protozoa by the calanoid copepods Acartia tonsa Dana and Neocalanus plumchrus Murukawa. Marine Microbial Food Webs 5: 161–177.

    Google Scholar 

  • Gillooly, J. F., E. L. Charnov, G. B. West, V. M. Savage & J. H. Brown, 2002. Effects of size and temperature on developmental time. Nature 417: 70–73.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, P. J., 1991. Quantitative importance and trophic role of heterotrophic dinoflagellates in a coastal pelagial food web. Marine Ecology Progress Series 73: 2–3.

    Article  Google Scholar 

  • Hansen, P. J., P. K. Bjørnsen & B. W. Hansen, 1997. Zooplankton grazing and growth: scaling within the 2–2000-μm body size range. Limnology and Oceanography 42: 687–704.

    Article  Google Scholar 

  • Huo, Y.-Z., S.-W. Wang, S. Sun, C.-L. Li & M.-T. Liu, 2008. Feeding and egg production of the planktonic copepod Calanus sinicus in spring and autumn in the Yellow Sea, China. Journal of Plankton Research 30: 723–734.

    Article  CAS  Google Scholar 

  • Ianora, A., S. A. Poulet & A. Miralto, 1995. A comparative study of the inhibitory effect of diatoms on the reproductive biology of the copepod Temora stylifera. Marine Biology 121: 533–539.

    Article  Google Scholar 

  • Ikeda, T., Y. Kanno, K. Ozaki & A. Shinada, 2001. Metabolic rates of epipelagic marine copepods as a function of body mass and temperature. Marine Biology 139: 587–596.

    Google Scholar 

  • Irigoien, X., 1998. Gut clearance rate constant, temperature and initial gut contents: a review. Journal of Plankton Research 20: 997–1003.

    Article  Google Scholar 

  • Irigoien, X., R. P. Harris, H. M. Verheye, P. Joly, J. Runge, M. Starr, D. Pond, R. Campbell, R. Shreeve, P. Ward, A. N. Smith, H. G. Dam, W. Peterson, R. Davidson, et al., 2002. Copepod hatching success in marine ecosystems with high diatom concentrations. Nature 419: 387–389.

    Article  PubMed  CAS  Google Scholar 

  • Jónasdóttir, S. H. & T. Kiørboe, 1996. Copepod recruitment and food composition: do diatoms affect hatching success? Marine Biology 125: 743–750.

    Article  Google Scholar 

  • Jónasdóttir, S. H., T. Kiørboe, K. W. Tang, M. StJohn, A. W. Visser, E. Saiz & H. G. Dam, 1998. Role of diatoms in copepod production: good, harmless or toxic? Marine Ecology Progress Series 172: 305–308.

    Article  Google Scholar 

  • Jonsson, P. R. & P. Tiselius, 1990. Feeding behaviour, prey detection and capture efficiency of the copepod Acartia tonsa feeding on planktonic ciliates. Marine Ecology Progress Series 60: 35–44.

    Article  Google Scholar 

  • Kimmerer, W. J. & A. D. McKinnon, 1987. Growth, mortality, and secondary production of the copepod Acartia tranteri in Westernport Bay, Australia. Limnology and Oceanography 32: 14–28.

    Article  Google Scholar 

  • Kiørboe, T., E. Saiz & M. Viitasalo, 1996. Prey switching behaviour in the planktonic copepod Acartia tonsa. Marine Ecology Progress Series 143: 65–75.

    Article  Google Scholar 

  • Klaas, C., P. G. Verity & S. Schultes, 2008. Determination of copepod grazing on natural plankton communities: correcting for trophic cascade effects. Marine Ecology Progress Series 357: 195–206.

    Article  CAS  Google Scholar 

  • Klein Breteler, W. C. M. & S. R. González, 1988. Influence of temperature and food concentration on body size, weight and lipid content of two calanoid copepod species. Hydrobiologia 167(168): 201–210.

    Article  Google Scholar 

  • Landry, M. R. & R. P. Hassett, 1982. Estimating the grazing impact of marine micro-zooplankton. Marine Biology 67: 283–288.

    Article  Google Scholar 

  • Leakey, R. J. G., P. H. Burkill & M. A. Sleigh, 1994. A comparison of fixatives for the estimation of abundance and biovolume of planktonic ciliate populations. Journal of Plankton Research 16: 375–389.

    Article  Google Scholar 

  • Lessard, E. J. & E. Swift, 1985. Species-specific grazing rates of heterotrophic dinoflagellates in oceanic waters, measured with a dual-label radioisotope technique. Marine Biology 87: 289–296.

    Article  Google Scholar 

  • McLaren, I. A., 1965. Some relationships between temperature and egg size, body size, development rate, and fecundity of the copepod Pseudocalanus. Limnology and Oceanography 10: 528–538.

    Article  Google Scholar 

  • Miralto, A., G. Barone, G. Romano, S. A. Poulet, A. Ianora, G. L. Russo, I. Buttino, G. Mazzarella, M. Laabir, M. Cabrini & M. G. Giacobbe, 1999. The insidious effect of diatoms on copepod reproduction. Nature 402: 173–176.

    Article  CAS  Google Scholar 

  • Modigh, M. & G. Franze, 2009. Changes in phytoplankton and microzooplankton populations during grazing experiments at a Mediterranean coastal site. Journal of Plankton Research 31: 853–864.

    Article  CAS  Google Scholar 

  • Møller, E. F., 2007. Production of dissolved organic carbon by sloppy feeding in the copepods Acartia tonsa, Centropages typicus, and Temora longicornis. Limnology and Oceanography 52: 79–84.

    Article  Google Scholar 

  • Nagy, K. A., 2005. Field metabolic rate and body size. Journal of Experimental Biology 208: 1621–1625.

    Article  PubMed  Google Scholar 

  • Nejstgaard, J. C., I. Gismervik & P. T. Solberg, 1997. Feeding and reproduction by Calanus finmarchicus, and microzooplankton grazing during mesocosm blooms of diatoms and the coccolithophore Emiliania huxleyi. Marine Ecology Progress Series 147: 197–217.

    Article  Google Scholar 

  • Nejstgaard, J. C., L. J. Naustvoll & A. Sazhin, 2001. Correcting for underestimation of microzooplankton grazing in bottle incubation experiments with mesozooplankton. Marine Ecology Progress Series 221: 59–75.

    Article  Google Scholar 

  • Peters, R. H., 1983. Ecological Implications of Body Size. Cambridge University Press, New York.

    Google Scholar 

  • Peters, R. H. & J. A. Downing, 1984. Empirical analysis of zooplankton filtering and feeding rates. Limnology and Oceanography 29: 763–784.

    Article  Google Scholar 

  • Peterson, W. T., P. Tiselius & T. Kiørboe, 1991. Copepod egg production, moulting and growth rates, and secondary production, in the Skagerrak in August 1988. Journal of Plankton Research 13: 131–154.

    Article  Google Scholar 

  • Poulet, S. A., A. Ianora, A. Miralto & L. Meijer, 1994. Do diatoms arrest embryonic development in copepods? Marine Ecology Progress Series 111: 79–86.

    Article  Google Scholar 

  • Robinson, W. R., R. H. Peters & J. Zimmermann, 1983. The effects of body size and temperature on metabolic rate of organisms. Canadian Journal of Zoology 61: 281–288.

    Article  Google Scholar 

  • Saiz, E. & A. Calbet, 2007. Scaling of feeding in marine calanoid copepods. Limnology and Oceanography 52: 668–675.

    Article  Google Scholar 

  • Saiz, E. & T. Kiørboe, 1995. Predatory and suspension-feeding of the copepod Acartia tonsa in turbulent environments. Marine Ecology Progress Series 122: 147–158.

    Article  Google Scholar 

  • Sanders, R. W. & S. A. Wickham, 1993. Planktonic protozoa and metazoa: predation, food quality and population control. Marine Microbial Food Webs 7: 197–223.

    Google Scholar 

  • Schultes, S., P. G. Verity & U. Bathmann, 2006. Copepod grazing during an iron-induced diatom bloom in the Antarctic Circumpolar Current (EixenEx): I. Feeding patterns and grazing impact on prey populations. Journal of Experimental Marine Biology and Ecology 338: 16–34.

    Article  Google Scholar 

  • Sherr, E. B., B. F. Sherr & G. A. Paffenhöfer, 1986. Phagotrophic protozoa as food for metazoans: a “missing” trophic link in marine pelagic food webs. Marine Microbial Food Webs 1: 61–80.

    Google Scholar 

  • Sherr, B. F., E. B. Sherr, D. A. Caron, D. Vaulot & A. Z. Worden, 2007. Oceanic protists. Oceanography 20: 130–134.

    Google Scholar 

  • Sime-Ngando, T. & C. A. Groliere, 1991. Effects quantitatifs des fixateurs sur la conservation des ciliés planctoniques d’eau douce. Archiv für Protistenkunde 140: 109–120.

    Google Scholar 

  • Sime-Ngando, T., H. J. Hartmann & C. A. Groliere, 1990. Rapid quantification of planktonic ciliates: comparison of improved live counting with other methods. Applied and Environmental Microbiology 56: 2234–2242.

    PubMed  CAS  Google Scholar 

  • Stoecker, D. K. & J. M. Capuzzo, 1990. Predation on Protozoa: its importance to zooplankton. Journal of Plankton Research 12: 891–908.

    Article  Google Scholar 

  • Stoecker, D. K., D. J. Gifford & M. Putt, 1994. Preservation of marine planktonic ciliates: losses and cell shrinkage during fixation. Marine Ecology Progress Series 110: 293–299.

    Article  Google Scholar 

  • Stoecker, D. K., M. D. Johnson, C. de Vargas & F. Not, 2009. Acquired phototrophy in aquatic protists. Aquatic Microbial Ecology 57: 279–310.

    Article  Google Scholar 

  • Turner, J. T. & P. A. Tester, 1997. Toxic marine phytoplankton, zooplankton grazers, and pelagic food webs. Limnology and Oceanography 42: 1203–1214.

    Article  Google Scholar 

  • Vargas, C. A. & H. E. Gonzalez, 2004. Plankton community structure and carbon cycling in a coastal upwelling system. I. Bacteria, microprotozoans and phytoplankton in the diet of copepods and appendicularians. Aquatic Microbial Ecology 34: 151–164.

    Article  Google Scholar 

  • Vidal, J. & E. Whitledge, 1982. Rates of metabolism of planktonic crustaceans as related to body weight and temperature of habitat. Journal of Plankton Research 4: 77–84.

    Article  Google Scholar 

  • Wen, Y. H. & R. H. Peters, 1994. Empirical models of phosphorous and nitrogen excretion rates by zooplankton. Limnology and Oceanography 39: 1669–1679.

    Article  CAS  Google Scholar 

  • Wichard, T., S. A. Poulet, A. L. Boulesteix, J. B. Ledoux, B. Lebreton, J. Marchetti & G. Pohnert, 2008. Influence of diatoms on copepod reproduction. II. Uncorrelated effects of diatom-derived α,ß,γ,δ-unsaturated aldehydes and polyunsaturated fatty acids on Calanus helgolandicus in the field. Progress in Oceanography 77: 30–44.

    Article  Google Scholar 

  • Wickham, S. A., 1995. Trophic relations between cyclopoid copepods and ciliated protists: complex interactions link the microbial and classic food webs. Limnology and Oceanography 40: 1173–1181.

    Article  Google Scholar 

  • Zar, J. H., 1999. Biostatistical Analysis, 4th ed. Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  • Zarauz, L. & X. Irigoien, 2008. Effects of Lugol’s fixation on the size structure of natural nano-microplankton samples, analyzed by means of an automatic counting method. Journal of Plankton Research 30: 1297–1303.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the authors of all the papers used in this study, and in particular thank K.-G. Barthel, D. Bonnet, C. Castellani, A. Cornils, M. Dagg, J. Dutz, E. Fileman, S. Gasparini, A. Hirst, X. Irigoien, G. Kleppel, T. Kobari, M. Koski, D. Mayor, A. Leising, J. Merrell, E. F. Møller, J. C. Nejstgaard, S. Schultes, S. Sun, D. Stoecker, A. Tsuda, E. J. Yang, C. Vargas, J. Zeldis and T. Zervoudaki, who kindly looked back into their old files and provided data and additional information about their studies. We also thank the three anonymous reviewers for their comments. This study was supported by project OITHONA (CTM2007-60052) from the Spanish Ministry of Education and Science. We especially thank Professor Jiang-Shiou Hwang from the National Taiwan Ocean University for the invitation to participate at the International Conference on Zooplankton Ecology and Behaviour held in Keelung (Taiwan) in October 2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enric Saiz.

Additional information

Guest editors: J.-S. Hwang and K. Martens / Zooplankton Behavior and Ecology

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 91 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saiz, E., Calbet, A. Copepod feeding in the ocean: scaling patterns, composition of their diet and the bias of estimates due to microzooplankton grazing during incubations. Hydrobiologia 666, 181–196 (2011). https://doi.org/10.1007/s10750-010-0421-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0421-6

Keywords

Navigation