Skip to main content
Log in

Feeding selectivity of calanoid copepods on phytoplankton in Jangmok Bay, south coast of Korea

  • Article
  • Published:
Ocean Science Journal Aims and scope Submit manuscript

Abstract

Grazing impacts of calanoid copepods on size-fractionated phytoplankton biomass [chlorophyll (Chl)-a] were measured in Jangmok Bay, Geoje Island, Korea, monthly from November 2004 to October 2005. The ingestion rate of calanoid copepods on total phytoplankton biomass ranged between 1 and 215 ng Chl-a copepod−1 day−1 during bottle incubations. Results indicated that microphytoplankton (> 20 μm) was the primary food source for calanoid copepods in grazing experiments on 3 phytoplankton size categories (< 3 μm, 3–20 μm, and > 20 μm). The ingestion rate on microphytoplankton showed a significant increase (r = 0.93, p < 0.01) with Chl-a concentration. Nanophytoplankton (3–20 μm) showed a negative ingestion rate from June 2005 to October 2005, but the reason is not completely understood. Calanoid copepods were unable to feed efficiently on picophytoplankton (< 3 μm) due to unfavorable size. Calanoid copepods removed between 0.1% and 27.7% (average, 3.6 ± 15.8%) of the phytoplankton biomass daily during grazing experiments. Grazing pressure was high in winter and early spring (January–March: 15.6–27.7%), while low in summer (June–August: −33.1–0.0%) and autumn (September–November: −1.4–5.1%). Results suggest that calanoid copepods play an important role in controlling the biomass and size structure of phytoplankton in winter and early spring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson A (1996) Subarctic copepods in an oceanic, low chlorophyll environment: ciliate predation, food selectivity and impact on prey poopulations. Mar Ecol Prog Ser 130:85–96

    Article  Google Scholar 

  • Atkinson A, Shreeve R (1995) Response of the copepod community to a spring bloom in the Bellingshausen Sea. Deep-Sea Res II 42:1291–1311

    Article  Google Scholar 

  • Båmsted U, Gifford DJ, Irigoien X, Atkinson A, Roman MR (2000) Feeding. In: Harris RP, Wiebe P, Lenz J, Skjoldal HR, Huntley M (Eds) ICES zooplankton methodology manual. Academic Press, London, pp 297–380

    Chapter  Google Scholar 

  • Barquero S, Cabal JA, Anadon R, Fernandez E, Varela M, Bode A (1998) Ingestion rates of phytoplankton by copepod size fractions on a bloom associated with an off-shelf front off NW Spain. J Plankton Res 20:957–972

    Article  Google Scholar 

  • Bathmann UV, Noji TT, Bodungen BV (1990) Copepod grazing potential in late winter in the Norwegian Sea-a factor in the control of spring phytoplankton growth? Mar Ecol Prog Ser 60:225–233

    Article  Google Scholar 

  • Berggreen U, Hansen B, Kiørboe T (1988) Food size spectra ingestion and growth of the copepod Acartia tonsa during development: implications for determination of copepod production. Mar Biol 99:341–352

    Article  Google Scholar 

  • Broglio E, Saiz E, Calbet A, Trepat I, Alcaraz M (2004) Trophic impact and prey selection by crustacean zooplankton on the microbial communities of an oligotrophic coastal area (NW Mediterranean). Aquat Microb Ecol 35:65–78

    Article  Google Scholar 

  • Calbet A, Carlotti F, Gaudy R (2007) The feedig ecology of the copepod Centropages typicus (Kröyer). Prog Oceanogr 72: 137–150

    Article  Google Scholar 

  • Calbet A, Landry MR (1999) Mesozooplankton influences on the microbial food web: direct and indirect trophic interactions in the oligotrophic open ocean. Limnol Oceanogr 44(6):1370–1380

    Article  Google Scholar 

  • Campbell R, Sherr E, Ashjian C, Plourde S, Sherr B, Hill V, Stockwell D (2009) Mesozooplankton prey preference and grazing impact in the Western Arctic Ocean. Deep-Sea Res II 56:1274–1289

    Article  Google Scholar 

  • Castellani C, Irigoien X, Harris RP, Lampitt RS (2005) Feeding and egg production of Oithona similis in the North Atlantic. Mar Ecol Prog Ser 288:173–182

    Article  Google Scholar 

  • Cowles TJ (1979) The feeding response of copepods from the Peru upwelling system: food size selection. J Mar Res 37: 601–622

    Google Scholar 

  • Dagg MJ (1993) Grazing by the copepod community does not control phytoplankton in the subarctic Pacific Ocean. Prog Oceanogr 32:163–183

    Article  Google Scholar 

  • Dagg MJ (1995) Ingestion of phytoplankton by the micro- and mesozooplankton communities in a productive subtropical estuary. J Plankton Res 17:845–857

    Article  Google Scholar 

  • Dam HG, Zhang X, Butler M, Roman MR (1995) Mesozooplankton grazing and metabolism at the equator in the central Pacific: implications for carbon and nitrogen fluxes. Deep-Sea Res II 42:735–756

    Article  Google Scholar 

  • Fessenden L, Cowles TJ (1994) Copepod predation on phagotrophic ciliates in Oregon coastal water. Mar Ecol Prog Ser 107:103–111

    Article  Google Scholar 

  • Fileman E, Smith T, Harris R (2007) Grazing by Calanus helgolandicus and Para-Pseudocalanus spp. on phytoplankton and protozooplankton during the spring bloom in the Celtic Sea. J Exp Mar Biol Ecol 348:70–84

    Article  Google Scholar 

  • Froneman PW (2002a) Trophic cascading in an oligotrophic temperate estuary, South Africa. J Plankton Res 24:807–816

    Article  Google Scholar 

  • Froneman PW (2002b) Seasonal variations in selected physicochemical and biological variables in the temporarily open/closed Kasouga estuary (South Africa). African J Aquat Sci 27:117–123

    Google Scholar 

  • Froneman PW (2006) The importance of phytoplankton size in mediating trophic interactions within the plankton of a southern African estuary. Estuar Coast Shelf Sci 70:693–700

    Article  Google Scholar 

  • Frost BW (1972) Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol Oceanogr 17:805–815

    Article  Google Scholar 

  • Gauld DT (1951) The grazing rate of planktonic copepods. J Mar Biol Assoc UK 29:695–706

    Article  Google Scholar 

  • Gifford DJ (1991) The protozoan-metazoan trophic link in pelagic ecosystems. J Protzool 38(1):81–86

    Google Scholar 

  • Gifford DJ, Dagg MJ (1988) Feeding of the estuarine copepod Acartia tonsa Dana: carnivory vs. herbivory in natural microplankton assemblages. Bull Mar Sci 43:458–468

    Google Scholar 

  • Gifford DJ, Dagg MJ (1991) The microzooplankton-mesozooplankton link: consumption of planktonic protozoa by the calanoid copepods Acartia tonsa Dana and Neocalanus plumchurus Murukawa. Mar Microb Food Webs 5(1):161–177

    Google Scholar 

  • Gifford SM, Rollwagen-Bollens GC, Bollens SM (2007) Mesozooplankton omnivory in the upper San Francisco Estuary. Mar Ecol Prog Ser 348:33–46

    Article  Google Scholar 

  • Gismervik I, Andersen T, Vadstein O (1996) Pelagic food webs and eutrophication of coastal waters: impact of grazers on algal communities. Mar Pollut Bull 33:22–35

    Article  Google Scholar 

  • Kim YO, Jang MC (2008) Temporal distribution of planktonic ciliates in Jangmok Bay, south coast of Korea. Ocean and Polar Res 30:419–426

    Article  Google Scholar 

  • Liu H, Dagg MJ (2003) Interactions between nutrients, phytoplankton growth, and micro- and mesozooplankton grazing in the plume of the Mississippi River. Mar Ecol Prog Ser 258:31–42

    Article  Google Scholar 

  • Liu H, Dagg MJ, Strom S (2005) Grazing by the calanoid copepod Neocalanus cristatus on the microbial foodweb in the coastal Gulf of Alaska. J Plankton Res 27:647–662

    Article  Google Scholar 

  • Lonsdale DJ, Cosper EM, Doall M (1996) Effects of zooplankton grazing on phytoplankton size-structure and biomass in the lower Hudson River Estuary. Estuaries 19:874–889

    Article  Google Scholar 

  • Nejstegaard JC, Naustvoll LJ, Sazhin A (2001) Correcting for underestimation of microzooplankton grazing in bottle incubation experiments with mesozooplankton. Mar Ecol Prog Ser 221:59–75

    Article  Google Scholar 

  • Nival P, Nival S (1976) Particle retention efficiencies of an herbivorous copepod, Acartia clausi (adult and copepodite stages): effects of grazing. Limnol Oceanogr 21(1):24–38

    Article  Google Scholar 

  • Ohman MD, Runge JA (1994) Sustained fecundity when phytoplankton resources are in short supply: omnivory by Calanus finmarchicus in the Gulf of St. Lawrence. Limnol Oceanogr 39:21–36

    Article  Google Scholar 

  • Olson MB, Lessard EJ, Wong CHJ, Bernhardt MJ (2006) Copepod feeding selectivity on microplankton, including the toxigenic diatoms Pseudo-nitzschia spp., in the coastal Pacific Northwest. Mar Ecol Prog Ser 326:207–220

    Article  Google Scholar 

  • Paffenhöfer GA (1988) Feeding rates and behaviour of zooplankton. Bull Mar Sci 43:430–445

    Google Scholar 

  • Pagano M, Kouassi E, Saint-Jean L, Arfi R, Bouvy M (2003) Feeding of Acartia clausi and Pseudodiaptomus hessei (Copepoda: Calanoida) on natural particles in a tropical lagoon (Ebrié, Côte d’Ivoire). Estuar Coast Shelf Sci 56:433–445

    Article  Google Scholar 

  • Richardson AJ, Shoeman DS (2004) Climate impact on plankton ecosystems in the Northeast Atlantic. Science 306:1609–1612

    Article  Google Scholar 

  • Rollwagen-Bollens GC, Penry DL (2003) Feeding dynamics of Acartia spp. copepods in a large, temperate estuary (San Francisco Bay, CA). Mar Ecol Prog Ser 257:139–158

    Article  Google Scholar 

  • Roman MR, Rublee PA (1981) A method to determine in situ zooplankton grazing rates on natural particle assemblages. Mar Biol 65:303–309

    Article  Google Scholar 

  • Rythe JH, Sanders JG (1980) Experimental evidence of zooplankton control of the species composition and size distribution of marine phytoplankton. Mar Ecol Prog Ser 3:279–283

    Article  Google Scholar 

  • Sautour B (1994) Feeding habits of copepod plankton in the laboratory-incubation effects. Cah Biol Mar 35:113–129

    Google Scholar 

  • Shin KS, Choi JK (1992) The feeding behavior of the marine planktonic copepod, Calanus sinicus and Acartia clausi (A. omorii). J Korean Soc Oceanogr 27:11–18

    Google Scholar 

  • Stoecker DK, Capuzzo JM (1990) Predation on protozoa: its importance to zooplankton. J Plankton Res 12:891–908

    Article  Google Scholar 

  • Stoecker DK, Egloff DA (1987) Predation by Acartia tonsa Dana on planktonic ciliates and rotifers. J Exp Mar Biol Ecol 110: 53–68

    Article  Google Scholar 

  • Suzuki K, Nakamura Y, Hiromi J (1999) Feeding by the small calanoid copepod Paracalanus sp. on heterotrophic dinoflagellates and ciliates. Aquat Microb Ecol 17:99–103

    Article  Google Scholar 

  • Tsuda A, Nemoto T (1988) Feeding of copepods on natural suspended particles in Tokyo Bay. J Oceanogr Soc Japan 44:217–227

    Article  Google Scholar 

  • Turner JT (2004) The importance of small planktonic copepods and their roles in pelagic marine food webs. ZoolStud 43: 255–266

    Google Scholar 

  • Wilson DS (1973) Food size selection among copepods. Ecology 57:909–914

    Article  Google Scholar 

  • Yang EJ, Kang HK, Yoo S, Hyun JH (2009) Contribution of auto-heterotrophic protozoa to the diet of copepods in the Ulleung Basin, East Sea/Japan Sea. J Plankton Res 31:647–659

    Article  Google Scholar 

  • Zeldis J, James MR, Grieve J, Richards L (2002) Omnivory by copepods in the New Zealand subtropical frontal zone. J Plankton Res 24:9–23

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoungsoon Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, MC., Shin, K., Lee, T. et al. Feeding selectivity of calanoid copepods on phytoplankton in Jangmok Bay, south coast of Korea. Ocean Sci. J. 45, 101–111 (2010). https://doi.org/10.1007/s12601-010-0009-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12601-010-0009-0

Key words

Navigation