Skip to main content
Log in

Partitioning of the food ration of marine ciliates between pico- and nanoplankton

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Food size-range for 13 species of Tintinnina and 18 species of Oligotrichina were studied using electronic particle counting and in situ observation of food vacuole contents. Tintinnids consume nanoplankton in the size range 2–20 μm. Oligotrichous naked ciliates consume particles in the size range 0.5–10 μm. Ciliates smaller than 30 μm take 72% picoplankton and 28% nanoplankton. For ciliates between 30 μm and 50 μm the proportions are reversed (30% pico- and 70% nanoplankton), while the larger ciliates (> 50 μm) take nanoplankton almost exclusively (95% nano- and 5% picoplankton). A seasonal study of total Oligotrichida grazing showed that natural particles were consumed at rates that varied from 1 to 20 μg C 1−1 day−1. This included between 1 and 38% of the bacterioplankton production and 9 to 52% of the nanoplankton production. In the N-W Mediterranean the total ciliate production varied from 0.4 to 8.2 μg C 1−1 day−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan, J. D., S. Richman, D. R. Heinle & R. Huff, 1977. Grazing in juvenile stages of some estuarine calanoid copepods. Mar. Biol. 43: 317–331.

    Article  Google Scholar 

  • Azam, F. & R. E. Hodson, 1977. Size distribution and activity of marine microheterotrophs. Limnol. Oceanogr. 22: 492–501.

    CAS  Google Scholar 

  • Banse, K., 1982. Cell volumes, maximal growth rates of unicellular algae and ciliates, and the role of ciliates in the marine pelagial. Limnol. Oceangr. 27(6): 1059–1071.

    Google Scholar 

  • Beers, J. R. & G. L. Stewart, 1967. Micro-zooplankton in the euphotic zone at five locations across the California Current. J. Fish Res. Bd Can. 24: 2053–2068.

    Google Scholar 

  • Beers, J. R. & G. L. Stewart, 1969. Micro-zooplankton and its abundance relative to the large zooplankton and other seston components. Mar. Biol. 4(3): 182–189.

    Article  Google Scholar 

  • Beers, J. R. & G. L. Stewart, 1970. The ecology of the plankton off La Jolla, California in the period April through September, 1967. Part VI. Numerical abundance and estimated biomass of microzooplankton. Bull. Scripps Inst. Oceanogr. 17: 67–87.

    Google Scholar 

  • Beers, J. R., F. M. H. Reid & G. L. Stewart, 1980. Microplankton population structure in southern California near shore waters in late spring. Mar. Biol. 60: 209–226.

    Article  Google Scholar 

  • Beers, J. R., F. M. H. Reid & G. L. Stewart, 1982. Seasonal abundance of microplankton population in the North Pacific central gyre. Deep Sea Res. 29(2A): 227–245.

    Article  Google Scholar 

  • Burkill, P. H., 1982. Ciliates and other microplankton components of a nearshore food web: standing stocks and production processes. Ann. Inst. Océanogr. Paris. 58(8): 335–350.

    Google Scholar 

  • Capriulo, G. M., 1982. Feeding of field collected tintinnids on natural food. Mar. Biol. 71: 73–86.

    Article  Google Scholar 

  • Capriulo, G. M. & E. J. Carpenter, 1980. Grazing by 35 to 202 μm microzooplankton in Long Island Sound. Mar. Biol. 56: 319–326.

    Article  Google Scholar 

  • Capriulo, G. M. & D. V. Ninivaggi, 1982. A comparison of the feeding impact of tintinnids and copepods fed identical natural particle assemblages. Ann. Inst. Océanogr. Paris. 58(S): 325–334.

    Google Scholar 

  • Caron, D. A., P. G. Davis, L. P. Madin & J. McN. Sieburth, 1982. Heterotrophic bacteria and bacterivorous protozoa in oceanic microaggregates. Science. 218: 795–797.

    PubMed  Google Scholar 

  • Corlikss, J. O., 1979. The ciliated Protozoa. Pergamon Press, 455 pp.

  • Dale, T., 1986. Diel vertical distribution of planktonic ciliates in Lindaspollene, western Norway. Marine Microbial Food ebs. 2, in press.

  • Derenbach, J. B. & P. J. Le B. Williams, 1974. Autotrophic and bacterial production: fractionation of plankton populations by differential filtration of samples from the English Channel. Mar. Biol. 25: 263–269.

    Article  Google Scholar 

  • Ducklow, H. W., D. A. Purdie, P. J. Le B. Williams & J. M. Davies, 1986. Bacterioplankton: A sink for carbon in a coastal marine plankton community. Science. 232: 865–867.

    CAS  PubMed  Google Scholar 

  • Fenchel, T., 1980a. Relation between particle size selection and clearance in suspension feeding ciliates. Limnol. Oceanogr. 25: 735–740.

    Google Scholar 

  • Fenchel, T., 1980b. Suspension feeding in ciliated protozoa: structure and function of feeding organelles. Arch. Protistenk. 123: 239–260.

    Google Scholar 

  • Fenchel, T., 1980c. Suspension feeding in ciliated protozoa: functional response and particle size selection. Microb. Ecol. 6: 1–12.

    Article  Google Scholar 

  • Fenchel, T., 1980d. Suspension feeding in ciliated protozoa: feeding rates and their ecological significance. Microb. Ecol. 6: 13–25.

    Article  Google Scholar 

  • Fenchel, T., 1982a. Ecology of heterotrophic microflagellates. Some important forms and their functional morphology. Mar. Ecol. Prog. Ser. 8: 211–223.

    Google Scholar 

  • Fenchel, T., 1982b. Ecology of heterotrophic microflagellates. Bioenergetics and growth. Mar. Ecol. Prog. Ser. 8: 225–231.

    Google Scholar 

  • Fenchel, T., 1982c. Ecology of heterotrophic microflagellates. Adaptations to heterogeneous environments. Mar. Ecol. Progr. Ser. 9: 25–33.

    Google Scholar 

  • Fenchel, T., 1982d. Ecology of heterotrophic microflagellates. Quantitative occurence and importance as bacterial consumers. Mar. Ecol. Prog. Ser. 9: 35–42.

    Google Scholar 

  • Fenchel, T., 1984. Suspended marine bacteria as a food source. In M. J. R. Fasham (ed.), Flows of Energy and Materials in Marine Ecosystems. Plenum Press, New York.: 301–316.

    Google Scholar 

  • Ferguson, R. L. & P. Rublee, 1976. Contribution of bacteria to standing crop of coastal plankton. Limnol. Oceanogr. 21: 141–144.

    Google Scholar 

  • Fisher-Defoy, D. & K. Hausmann, 1977. Untersuchungen zur phagocytose bei Climacostomum virens. Protistologica. 13: 459–476.

    Google Scholar 

  • Fisher-Defoy, D. & K. Hausmann, 1982. Ultrastructural characteristics of algal digestion by Climacostomum virens (Ciliata) (Ehrenberg) Stein. Zoomorphology. 100: 121–130.

    Article  Google Scholar 

  • Gebauer, H. J., 1977. Ingestion and digestion in the ciliate Tetrahymena pyriformis. Study of a temporal and structural analysis. Protistologica. 13: 535–548.

    Google Scholar 

  • Goldmann, J. C., J. J. McCarthy & D. C. Peavey, 1979. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279: 210–215.

    Article  Google Scholar 

  • Haas, L. W. & K. L. Webb, 1979. Nutritional mode of several non-pigmented microflagellates from the York River Estuary, Virginia. J. exp. mar. Biol. Ecol. 39: 125–134.

    Article  Google Scholar 

  • Hagström, A., U. Larsson, P. Hörstedt & S. Normark, 1979. Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments. Appl. Environ. Microbiol. 37: 805–812.

    PubMed  Google Scholar 

  • Hargrave, B. T., G. C. Harding, K. F. Drinkwater, T. C. Lambert & W. G. Harrison, 1984. Dynamics of the pelagic food web in St. Georges Bay, southern Gulf of St. Lawrence. Mar. Ecol. Prog. Ser. 20: 221–240.

    Google Scholar 

  • Heinbokel, J. F., 1978. Studies on the functional role of tintinnids in the southern California Bigth. I. Grazing and growth rates in laboratory cultures. Mar. Biol. 47: 177–189.

    Article  Google Scholar 

  • Heinbokel, J. F. & J. R. Beers, 1979. Studies on the functional role of tintinnids in the southern California bight. III. Grazing impact of natural assemblages. Mar. Biol. 52: 23–32.

    Article  Google Scholar 

  • Ibanez, J. F. & F. Rassoulzadegan, 1977. A study of the relationships between pelagic ciliates (Oligotrichina) and planktonic nanoflagellates of the neritic ecosystem of the Bay of Villefranche-sur-Mer. Analysis of chronological series. Ann. Inst. Oceanogr. Paris. 53: 17–30.

    Google Scholar 

  • Jonsson, P. R., 1986. Particle size selection, feeding rates and growth dynamics of marine planktonic oligotrich ciliates, (Ciliophora, Oligotrichina). Mar. Ecol. Prog. Ser. 33: 265–277.

    Google Scholar 

  • Jones, M. & C. P. Spencer, 1970. The phytoplankton of the Menai straits. J. cons. Perm. explor. Mer. 33: 169–180.

    Google Scholar 

  • Kerr, S. R., 1974. Theory of size distribution in ecological communities. J. Fish. Res. Bd Can. 31: 1859–1862.

    Google Scholar 

  • Landry, M. R. & R. P. Hassett, 1982. Estimating the grazing impact of marine micro-zooplankton. Mar. Biol. 67: 283–288.

    Article  Google Scholar 

  • Laval-Peuto, M., P. Salvano, P. Gayol & C. Greuet, 1986. Mixotrophy in marine planktonic ciliates: An ultrastructural study of Tontonia appendiculariformis (Oligotrichina, Ciliophora). Marine Microbial Food Webs. 2: 81–104.

    Google Scholar 

  • Lessard, E. J. & E. Swift, 1985. Species-specific grazing rates of heterotrophic dinoflagellates in oceanic waters, measured with a dual label radioisotope technique. Mar. Biol. 87: 289–296.

    Article  Google Scholar 

  • Li, W. K., D. V. Subba Rao, W. G. Harrison, J. C. Smith, J. J. Cullen, B. Irwin & T. Platt, 1983. Autotrophic picoplankton in the tropical ocean. Science 219: 292–295.

    PubMed  Google Scholar 

  • MacCarthy, J. J. & J. C. Goldman, 1979. Nitrogenous nutrition of marine phytoplankton in nutrient-depleted waters. Science 203: 670–672.

    Google Scholar 

  • Malone, T. C., 1971. The relative importance of nanoplankton and netplankton as primary producers in the California Current system. Fish. Bull. 69: 799–820.

    Google Scholar 

  • Margalef, R., 1963. Rôle des ciliés dans le cycle de la vie pélagique en Méditerranée. Rapp. Com. Int. mer Médit. 17: 463.

    Google Scholar 

  • Mast, S. O., 1947. The food vacuole in Paramecium. Biol. Bull. 92: 31–72.

    CAS  PubMed  Google Scholar 

  • Nilsson, J. R., 1977. On food vacuoles in Tetrahymena pyriformis GL. J. Protozool. 24: 502–507.

    Google Scholar 

  • Nilsson, J. R., 1979. Phagotrophy in Tetrahymena. In M. Lavandowsky and S. H. Hunter (eds.), Biochemistry and physiology of protozoa. Vol. 2. Academic Press: 344–379.

  • Nival, P. & S. Nival, 1976. Particle retention efficiencies of an herbivorous copepod, Acartia clausi (adult and copepodite stages): Effects on grazing. Limnol. Oceanogr. 21: 24–38.

    Article  Google Scholar 

  • Pace, M. L., 1982. Planktonic ciliates: Their distribution, abundance, and relationship to microbial resources in a monmicitc lake. Can. J. Fish. Aquat. Sci. 39: 1106–1116.

    Article  Google Scholar 

  • Paffenhöfer, G. A., 1984. Calanoid copepod feeding: grazing on small and large particles. In D. G. Meyers and J. R. Strickler (eds.), Trophic interactions within aquatic ecosystems. Boulder, Westview Press: 75–95.

    Google Scholar 

  • Paranjape, M. A., R. J. Conover, G. C. Harding & N. J. Prouse, 1985. Micro- and macrozooplankton on the Nova Scotian Shelf in the prespring bloom period: a comparison of their potential resource utilization. Can. J. Fish. Aquat. Sci. 42: 1484–1492.

    Google Scholar 

  • Parsons, T. R., 1969. The use of particle size spectra in determining the structure of a plankton community. J. Oceanogr. Soc. Jap. 25: 172–181.

    Google Scholar 

  • Platt, T., D. V. Subba Rao & B. Irwin, 1983. Photosynthesis of picoplankton in oligotrophic ocean. Nature. 301: 702–704.

    Article  CAS  Google Scholar 

  • Porter, K. G., M. L. Pace & J. F. Battey, 1979. Ciliate protozoans as links in freshwater planktonic food chains. Nature. 277: 563–565.

    Article  Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.

    Google Scholar 

  • Rassoulzadegan, F., 1977. Evolution annuelle des Ciliés pélagiques en Méditerranée nord-occidentale. Ciliés oligotriches ‘non tintinnides’ (Oligotrichina). Ann. Inst. Oceanogr. Paris. 53: 125–134.

    Google Scholar 

  • Rassoulzadegan, F., 1978. Dimensions et taux d'ingestion des particules consummées par un Tintinnide: Favella ehrenbergii (Clap. & Lohm.) Jörg., Cilié pélagique. Ann. Inst. Oceanogr. Paris. 54: 17–24.

    Google Scholar 

  • Rassoulzadegan, F., 1979a. Evolution annuelle des Ciliés pélagiques en Méditerranée nord-occidentale. 2. Ciliés oligotriches. Tintinnides (Tintinnda). Invest. Pesq. 43: 417–448.

    Google Scholar 

  • Rassoulzadegan, R., 1979b. Cycles annuels de la distribution de différentes catégories de particules du seston et essai d'identification des principales poussée phytoplanctoniques dans les eaux néritiques de Villefranche-sur-Mer. J. exp. mar. Biol. Ecol. 38: 41–56.

    Article  Google Scholar 

  • Rassoulzadegan, F., 1982a. Temperature dependence of grazing rate, gross growth efficiency and food size range in a pelagic oligotrichous ciliate: Lohmanniella spiralis Leeg., fed on naturally occuring particulate matter. Ann. Inst. Océanogr. Paris. 58: 177–184.

    Google Scholar 

  • Rassoulzadegan, F., 1982b. Le rôle fonctionnel du microzooplankton dans un écosystème méditerranéen. Thesis Doct. Sc. Univ. P. & M. Curie (Paris VI), 138 pp.

  • Rassoulzadegan, F. & M. Etienne, 1981. Grazing rate of the tintinnid Stenosemella ventricosa (Clap. & Lachm) Jörg. on the spectrum of the naturally occurring particulate matter from a Mediterranean neritic area. Limnol. Oceanogr. 26: 258–270.

    Google Scholar 

  • Rassoulzadegan F. & R. W. Sheldon, 1986. Predator-prey interactions of nanozooplankton and bacteria in an oligotrophic marine environment. Limnol. Oceanogr. 31(5): 1010–1021.

    Google Scholar 

  • Revelante, N. & M. Gilmartin, 1983. Microzooplankton distribution in the Northern Adriatic Sea with emphasis on the relative abundance of ciliated protozoa. Oceanologica Acta. 6: 407–415.

    Google Scholar 

  • Riley, G. A., 1957. Phytoplankton of the North Central Sargasso Sea, 1950–52. Limnol. Oceanogr. 2: 252–270.

    Google Scholar 

  • Rivier, A., D. C. Brownlee, R. W. Sheldon & F. Rassoulzadegan, 1985. Growth of microzooplankton: a comparative study of bactivorous zooflagellates and ciliates. Marine Microbial Food Webs. 1: 51–60.

    Google Scholar 

  • Sheldon, R. W., 1984. Phytoplankton growth rates in the tropical ocean. Limnol. Oceanogr. 29: 1342–1346.

    Google Scholar 

  • Sheldon, R. W. & T. R. Parsons, 1967. A practical manual on the use of the Coulter Counter in marine science. Coulter Electronics Toronto.

  • Sheldon, R. W., A. Prakash & W. H. Sutcliffe, Jr., 1972. The size distribution of particles in the ocean. Limnol. Oceanogr. 17: 327–340.

    Google Scholar 

  • Sheldon, R. W., W. H. Sutcliffe, Jr. & M. A. Paranjape, 1977. Structure of pelagic food chain and relationship between plankton and fish production. J. Fish. Res. Bd Can. 34: 2344–2353.

    Google Scholar 

  • Sheldon, R. W., P. Nival & F. Rassoulzadegan, 1986. An experimental investigation of a flagellate-ciliate-copepod food chain with some observations relevant to the linear biomass hypothesis. Limnol. Oceanogr. 31: 184–188.

    Google Scholar 

  • Sheldon, R. W. and F. Rassoulzadegan, 1987. A method for measuring plankton production by particle counting. Marine Microbial Food Webs 2: 29–44.

    Google Scholar 

  • Sherr, E. B., B. F. Sherr, R. Fallon & S. Newell, 1986a. Small aloricate ciliates as a major component of the marine heterotrophic nanoplankton. Limnol. Oceanogr. 31: 177–183.

    Google Scholar 

  • Sherr, E. B., B. F. Sherr & G. A. Paffenhöfer, 1986b. Phagotrophic protozoa as food for metazoans: a missing trophic link in marine pelagic food webs? Marine Microbial Food Webs. 1(2): 61–80.

    Google Scholar 

  • Sieburth, J. McN., 1979. Sea Microbes. Oxford University Press, New York. 491 pp.

    Google Scholar 

  • Sieburth, J. McN., 1985. Protozoan bacterivory in pelagic marine waters. In J. E. Hobbie and P. J. Le B. Williams (eds.), Heterotrophic activity in the Sea. Plenum Press, New York: 405–444.

    Google Scholar 

  • Smetacek, V. S., 1981. The annual cycle of protozooplankton in the Kiel Bight. Mar. Biol. 63: 1–11.

    Article  Google Scholar 

  • Sorokin, Y. I., 1981. Microheterotrophic organisms in marine ecosystems. In A. R. Longhurst (ed.), Analysis of marine Ecosystems. Academic Press, New York: 293–342.

    Google Scholar 

  • Sprules, W. G., J. M. Casselman & B. J. Shuter, 1983. Size distribution of pelagic particles in lakes. Can. J. Fish. Aquat. Sci. 40: 1761–1769.

    Google Scholar 

  • Stoecker, D. K., 1984. Particle production by planktonic ciliates. Limnol. Oceanogr. 29: 930–940.

    Google Scholar 

  • Stoecker, D., R. R. L. Guillard & R. M. Kavee, 1981. Selective predation by Favellu ehrenbergii (Tintinnina) on and among dinoflagellates. Biol. Bull. 160: 136–145.

    Google Scholar 

  • Strathmann, R. R., 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr. 12: 411–418.

    CAS  Google Scholar 

  • Takahashi, M. & K. D. Hoskins, 1978. Winter condition of marine plankton populations in Saanich Inlet, B.C. Canada. II. Microzooplankton. J. expl. mar. Biol. Ecol. 32: 27–37.

    Article  Google Scholar 

  • Taniguchi, A. & R. Kawakami, 1985. Feeding activity of a Tintinnid ciliate Favella taraikaensis and its variability observed in laboratory cultures. Marine Microbial Food Webs. 1: 17–34.

    Google Scholar 

  • Thomas, W. H., 1970. Effect of ammonium and nitrate concentrations on chlorophyll increase in natural tropical Pacific phytoplankton populations. Limnol. Oceanogr. 15: 386–394.

    CAS  Google Scholar 

  • Verity, P. G., 1985. Grazing, respiration, excretion, and growth rates of tintinnids. Limnol. Oceanogr. 30: 1268–1282.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by CNRS-PIROCEAN AIP-RTM-953146-GRECO P4 and by CNRS-UA 716 (FR), and by the University of Nice and by the CNRS-GRECO 88 (MLP)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rassoulzadegan, F., Laval-Peuto, M. & Sheldon, R.W. Partitioning of the food ration of marine ciliates between pico- and nanoplankton. Hydrobiologia 159, 75–88 (1988). https://doi.org/10.1007/BF00007369

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00007369

Key words

Navigation