The primary use of 5D experiments is currently the sequential resonance assignment of intrinsically disordered proteins. For this reason, we demonstrate the utility of SSA processing using a sample of human α-synuclein, a paradigmatic small IDP (140 a.a.) involved in neurodegenerative diseases. In this section, we present the reconstruction of two 5D spectra, HN(CA)CONH and (HACA)CON(CO)CONH. The median of noise in reconstructed and nuFT spectra are depicted in Fig. 4. In both cases the effective noise varies significantly from the base line noise in the most populated regions of directly detected dimension (1HN). The reduction of sampling noise level by SSA is evident, leading to an almost uniform noise level in HN(CA)CONH.
5D HN(CA)CONH
The 5D HN(CA)CONH experiment used here was optimized for the detection of sequential correlations only. However, the sensitivity of the experiment is not compromised thanks to the advantageous relaxation properties of IDPs. Obtained spectra contain only one type of correlation peaks, Hi−1Ni−1COi−1NiHi, and are thus straightforward to interpret. Furthermore, this solution naturally reduces the accumulation of sampling artefacts.
Partial data sets containing a varying number of hypercomplex points (25, 40, 50, 75, 125, 250 and 500) were prepared and processed using nuFT and SSA. The representative set of five consecutive 2D cross-sections shown in Fig. 5 for a 50-point sampling scheme demonstrates a spectacular improvement in signal-to-noise ratio due to SSA reconstruction. On the contrary, resonances are obscured by artificial noise in nuFT spectra, and their detection requires additional sampling points. All processed cross-sections were inspected for the presence of sequential correlations assuming a minimum S/N of 6; the results are presented in Fig. 6. SSA processing increased spectral quality for all datasets with the most remarkable effect for smaller numbers of sampling points. The 50-point dataset, which corresponds to only a 80 min acquisition, yields the vast majority (94%) of expected peaks, illustrating the potential of SSA to reduce measurement time.
5D (HACA)CON(CO)CONH
The 5D (HACA)CON(CO)CONH experiment was designed particularly for sequential resonance assignment and has several salient features. It utilizes the 3J(CO–CO) couplings to provide both forward and backward connectivity. The use of TOCSY mixing additionally allows to observe farther correlations, depending on the mixing time. In our dataset, correlations of up to two residues apart were detected. However, peak intensity strongly decreases with the number of relay steps in the TOCSY transfer. Uninformative diagonal peaks are generally the strongest ones. Unless NUS is combined with SSA reconstruction, the presence of artefacts originating from these intense peaks actively diminishes the utility of the experiment.
5D (HACA)CON(CO)CONH was acquired in only 8 h, using 225 hypercomplex sampling points. As before, 3D HNCO peak list was used as input for SSA processing. 2D cross-sections were generated from both SSA–processed and nuFT spectra, and a set of consecutive cross-sections is presented in Fig. 7. All cross-sections were inspected for the presence of diagonal and (+2, +1, −1 and −2) cross-peaks, imposing a minimum S/N of 6. The results are illustrated on Fig. 8 and also summarized in Table 2. SSA-reconstruction substantially increased the number of detectable cross-peaks (+58%), with the most pronounced effect for the weak ±2 correlations, unique to TOCSY experiments.
Table 2 Number of detected peaks by type in the 5D (HACA)CON(CO)CONH spectrum
For both of the presented experiments, which demonstrate either low (HN(CA)CONH) or high ((HACA)CON(CO)CONH) dynamic range of peak intensities, SSA efficiently reduces sampling noise. As a result, a spectrum of a given quality can thus be obtained in a shorter time. The computational cost of 5D SSA reconstruction is also reasonable. The computation time on a standard desktop computer ranges from tens of minutes for simple spectra to tens of hours for more complex ones. The primary factors influencing the processing time are the number of acquired data points, digital spectral resolution and number of observed peaks.
We proved that, despite its inherent limitations, SSA yields high-quality five-dimensional spectra. For a majority of high-dimensional spectra NMR of biomolecules, the assumption of well localised spectral features is well fulfilled and allows for local treatment of peak fitting. The computational cost and memory requirements are greatly reduced compared to the methods requiring global optimisations, such as CS and maximum entropy reconstruction. However, for highly resolved 5D spectra even a direct extension of previous SSA would result in unacceptably long computational times. To overcome this problem, we have explicitly imposed the localisation of spectral features in three dimensions to the regions defined by a “root” resonance list. This restricts the search space to an extent that can be processed in a reasonable time. The new reconstruction method outperforms the previously available SMFT, which employs bare nuFT. We would like to note that algorithms such as MDD (Orekhov and Jaravine 2011) or SFFT (Hassanieh et al. 2015) are in principle also suitable for the processing of 5D NUS data, however, no implementation is so far available and thus one cannot compare the quality of reconstructions in terms of sensitivity, convergence and sampling thresholds. While α-synuclein used in this study is a relatively small IDP and thus spectral overlap is quite limited and possible to overcome using 3D and 4D spectroscopy, larger IDPs obviously exhibit more severe spectral crowding, which necessitates the acquisition of 5D experiments. At the same time, peak congestion leads to elevated sampling noise, therefore increased gains from spectral reconstruction for larger IDPs are to be expected.