Skip to main content
Log in

Spectral density mapping protocols for analysis of molecular motions in disordered proteins

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Spectral density mapping represents the method of choice for investigations of molecular motions of intrinsically disordered proteins (IDPs). However, the current methodology has been developed for well-folded proteins. In order to find conditions for a reliable analysis of relaxation of IDPs, accuracy of the current reduced spectral density mapping protocols applied to IDPs was examined and new spectral density mapping methods employing cross-correlated relaxation rates have been designed. Various sources of possible systematic errors were analyzed theoretically and the presented approaches were tested on a partially disordered protein, delta subunit of bacterial RNA polymerase. Results showed that the proposed protocols provide unbiased description of molecular motions of IDPs and allow to separate slow exchange from fast dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barthe P, Chiche L, Declerck N, Delsuc M, Lefèvre J, Malliavin T, Mispelter J, Stern M, Lhoste J, Roumestand C (1999) Refined solution structure and backbone dynamics of 15N-labeled C12A-p8MTCP1 studied by NMR relaxation. J Biomol NMR 15:271–288. doi:10.1023/A:1008336418418

    Article  Google Scholar 

  • Bussell R, Eliezer D (2001) Residual structure and dynamics in Parkinson’s disease-associated mutants of alpha-synuclein. J Biol Chem 276(49):45,996–46,003

    Article  Google Scholar 

  • Cao W, Bracken C, Kallenbach NR, Lu M (2004) Helix formation and the unfolded state of a 52-residue helical protein. Protein Sci 13:177–189. doi:10.1110/ps.03383004

    Article  Google Scholar 

  • d’Auvergne EJ, Gooley PR (2008) Optimisation of NMR dynamic models I. Minimisation algorithms and their performance within the model-free and Brownian rotational diffusion spaces. J Biomol NMR 40:107–119. doi:10.1007/s10858-007-9214-2

    Article  Google Scholar 

  • d’Auvergne EJ, Gooley PR (2008) Optimisation of NMR dynamic models II. A new methodology for the dual optimisation of the model-free parameters and the Brownian rotational diffusion tensor. J Biomol NMR 40:121–133. doi:10.1007/s10858-007-9213-3

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister G, Zhu G, Pfeifer J, Bax A (1995) NMRPipe—a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293. doi:10.1007/BF00197809

    Google Scholar 

  • DeSaro F, Woody A, Helmann J (1995) Structural-analysis of the Bacillus-subtilis delta-factor—a protein polyanion which displaces RNA from RNA-polymerase. J Mol Biol 252(2):189–202

    Article  Google Scholar 

  • Dyson H, Wright P (2004) Unfolded proteins and protein folding studied by NMR. Chem Rev 104(8):3607–3622

    Article  Google Scholar 

  • Eliezer D (2007) Characterizing residual structure in disordered protein states using nuclear magnetic resonance. Methods Mol Biol 350:49–67

    Google Scholar 

  • Eliezer D (2009) Biophysical characterization of intrinsically disordered proteins. Curr Opin Struct Biol 19(1):23–30

    Article  Google Scholar 

  • Farrow N, Zhang O, Szabo A, Torchia D, Kay L (1995) Spectral density function mapping using 15N relaxation data exclusively. J Biomol NMR 6:153–162

    Google Scholar 

  • Farrow NA, Zhang OW, FormanKay JD, Kay LE (1997) Characterization of the backbone dynamics of folded and denatured states of an SH3 domain. Biochemistry 36:2390–2402. doi:10.1021/bi962548h

    Article  Google Scholar 

  • Ferrage F, Cowburn D, Ghose R (2009) Accurate sampling of high-frequency motions in proteins by steady-state 15N–1H nuclear Overhauser effect measurements in the presence of cross-correlated relaxation. J Am Chem Soc 131(17):6048+. doi:10.1021/ja809526q

    Article  Google Scholar 

  • Hall J, Fushman D (2003) Direct measurement of the transverse and longitudinal 15N chemical shift anisotropy-dipolar cross-correlation rate constants using 1H-coupled HSQC spectra. Magn Reson Chem 41:837–842. doi:10.1002/mrc.1253

    Article  Google Scholar 

  • Hall J, Dayie K, Fushman D (2003) Direct measurement of the 15N CSA/dipolar relaxation interference from coupled HSQC spectra. J Biomol NMR 26:181–186. doi:10.1023/A:1023546107553

    Article  Google Scholar 

  • Halle B, Andersson T, Forsén S, Lindman B (1981) Protein hydration from water oxygen-17 magnetic-relaxation. J Am Chem Soc 103:500–508. doi:10.1021/ja00393a004

    Article  Google Scholar 

  • Ishima R, Nagayama K (1995) protein backbone dynamics revealed by quasi spectral density function analysis of amide N-15 nuclei. Biochemistry 34:3162–3171. doi:10.1021/bi00010a005

    Article  Google Scholar 

  • Ishima R, Nagayama K (1995) Quasi-spectral-density function analysis for nitrogen-15 nuclei in proteins. J Magn Reson Ser B 108:73–76. doi:10.1006/jmrb.1995.1104

    Article  Google Scholar 

  • Kim S, Wu KP, Baum J (2013) Fast hydrogen exchange affects 15N relaxation measurements in intrinsically disordered proteins. J Biomol NMR 55:249–256. doi:10.1007/s10858-013-9706-1

    Article  Google Scholar 

  • Korzhnev D, Billeter M, Arseniev A, Orekhov V (2001) NMR studies of Brownian tumbling and internal motions in proteins. Prog Nucl Magn Reson Spectrosc 38:197–266. doi:10.1016/S0079-6565(00)00028-5

    Article  Google Scholar 

  • Křížová H, Žídek L, Stone M, Novotný M, Sklenář V (2004) Temperature-dependent spectral density analysis applied to monitoring backbone dynamics of major urinary protein-I complexed with the pheromone 2-sec-butyl-4,5-dihydrothiazole. J Biomol NMR 28:369–384. doi:10.1023/B:JNMR.0000015404.61574.65

    Article  Google Scholar 

  • Lefèvre J, Dayie K, Peng J, Wagner G (1996) Internal mobility in the partially folded DNA binding and dimerization domains of GAL4: NMR analysis of the N–H spectral density functions. Biochemistry 35:2674–2686. doi:10.1021/bi9526802

    Article  Google Scholar 

  • Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules. 1. Theory and range of validity. J Am Chem Soc 104:4546–4559. doi:10.1021/ja00381a009

    Article  Google Scholar 

  • Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules. 2. Analysis of experimental results. J Am Chem Soc 104:4559–4570. doi:10.1021/ja00381a010

    Article  Google Scholar 

  • Long D, Liu M, Yang D (2008) Accurately probing slow motions on millisecond timescales with a robust NMR relaxation experiment. J Am Chem Soc 130(8):2432–2433. doi:10.1021/ja710477h

    Article  Google Scholar 

  • Motáčková V, Nováček J, Zawadzka-Kazimierczuk A, Kazimierczuk K, Žídek L, Šanderová H, Krásný L, Koźmiński W, Sklenář V (2010) Strategy for complete NMR assignment of disordered proteins with highly repetitive sequences based on resolution-enhanced 5D experiments. J Biomol NMR 48(3):169–177. doi:10.1007/s10858-010-9447-3

    Article  Google Scholar 

  • Motáčková V, Šanderová H, Žídek L, Nováček J, Padrta P, Švenková A, Korelusová J, Jonák J, Krásný L, Sklenář V (2010) Solution structure of the N-terminal domain of Bacillus subtilis δ subunit of RNA polymerase and its classification based on structural homologs. Proteins 78(7):1807–1810. doi:10.1002/prot.22708

    Google Scholar 

  • Ochsenbein F, Guerois R, Neumann JM, Sanson A, Guittet E, van Heijenoort C (2001) 15N NMR relaxation as a probe for helical intrinsic propensity: The case of the unfolded D2 domain of annexin I. J Biomol NMR 19:3–18. doi:10.1023/A:1008390606077

    Article  Google Scholar 

  • Papoušková V, Kadeřávek P, Otrusinová O, Rabatinová A, Šanderová H, Nováček J, Krásný L, Sklenář V, Žídek L (2013) Structural study of the partially disordered full-length δ subunit of RNA polymerase from Bacillus subtilis. ChemBioChem 14:1772–1779. doi:10.1002/cbic.201300226

    Article  Google Scholar 

  • Pelupessy P, Espallargas GM, Bodenhausen G (2003) Symmetrical reconversion: measuring cross-correlation rates with enhanced accuracy. J Magn Res 161:258–264. doi:10.1016/S1090-7807(02)00190-8

    Article  ADS  Google Scholar 

  • Pelupessy P, Ferrage F, Bodenhausen G (2007) Accurate measurement of longitudinal cross-relaxation rates in nuclear magnetic resonance. J Chem Phys 126. doi:10.1063/1.2715583

  • Peng J, Wagner G (1992) Mapping of spectral density-functions using heteronuclear NMR relaxation measurements. J Magn Reson 98:308–332. doi:10.1016/0022-2364(92)90135-T

    ADS  Google Scholar 

  • Peng J, Wagner G (1992) Mapping of the spectral densities of N–H bond motions in eglin c using heteronuclear relaxation experiments. Biochemistry 31:8571–8586. doi:10.1021/bi00151a027

    Google Scholar 

  • Pero J, Nelson J, Fox TD (1975) Highly asymmetric transcription by rna-polymerase containing phage-Sp01-induced polypeptides and a new host protein. Proc Natl Acad Sci USA 72:1589–1593. doi:10.1073/pnas.72.4.1589

    Article  ADS  Google Scholar 

  • Rabatinová A, Šanderová H, Jirát Matějčková J, Korelusová J, Sojka L, Barvík I, Papoušková V, Sklenář V, Žídek L, Krásný L (2013) The delta subunit of RNA polymerase is required for rapid changes in gene expression and competitive fitness of the cell. J Bacteriol 195:2603–2611. doi:10.1128/JB.00188-13

  • Redfield A (1965) The theory of relaxation processes. Adv Magn Reson 1:1–32

    Article  Google Scholar 

  • Tjandra N, Wingfield P, Stahl S, Bax A (1996) Anisotropic rotational diffusion of perdeuterated HIV protease from 15N NMR relaxation measurements at two magnetic fields. J Biomol NMR 8:273–284. doi:10.1007/BF00410326

    Article  Google Scholar 

  • Tompa P (2012) Intrinsically disordered proteins: a 10-year recap. Trends Biochem Sci 37:509–516. doi:10.1016/j.tibs.2012.08.004

    Article  Google Scholar 

  • Uversky VN (2013) Unusual biophysics of intrinsically disordered proteins. Biochim Biophys Acta 1834:932–951. doi:10.1016/j.bbapap.2012.12.008

    Article  Google Scholar 

  • Wangsness R, Bloch F (1953) The dynamical theory of nuclear induction. Phys Rev Lett 89(4):728–739. doi:10.1103/PhysRev.89.728

    MATH  ADS  Google Scholar 

  • Yao J, Chung J, Eliezer D, Wright PE, Dyson HJ (2001) NMR structural and dynamic characterization of the acid-unfolded state of apomyoglobin provides insights into the early events in protein folding. Biochemistry 40:3561–3571. doi:10.1021/bi002776i

    Article  Google Scholar 

  • Yao L, Grishaev A, Cornilescu G, Bax A (2010) Site-specific backbone amide 15N chemical shift anisotropy tensors in a small protein from liquid crystal and cross-correlated relaxation measurements. J Am Chem Soc 132:4295–4309. doi:10.1021/ja910186u

    Article  Google Scholar 

  • Zhang XC, Xu YQ, Zhang JH, Wu JH, Shi YY (2005) Structural and dynamic characterization of the acid-unfolded state of hUBF HMG box 1 provides clues for the early events in protein folding. Biochemistry 44:8117–8125. doi:10.1021/bi0501939

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Czech Science Foundation, grant number GA 13-16842S (P. K., A. R., L. K., L. Ž). The partial support by the project “CEITEC—Central European Institute of Technology” from European Regional Development Fund, grant number CZ.1.05/1.1.00/02.0068, and the Joint Research Activity of the 7th Framework program of the EC (BioNMR, no. 261863) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukáš Žídek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (115 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadeřávek, P., Zapletal, V., Rabatinová, A. et al. Spectral density mapping protocols for analysis of molecular motions in disordered proteins. J Biomol NMR 58, 193–207 (2014). https://doi.org/10.1007/s10858-014-9816-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-014-9816-4

Keywords

Navigation