Skip to main content

Structure and Dynamics of Intrinsically Disordered Proteins

  • Chapter
  • First Online:
Intrinsically Disordered Proteins Studied by NMR Spectroscopy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 870))

Abstract

Intrinsically disordered proteins (IDPs) are involved in a wide range of essential biological processes, including in particular signalling and regulation. We are only beginning, however, to develop a detailed knowledge of the structure and dynamics of these proteins. It is becoming increasingly clear that, as IDPs populate highly heterogeneous states, they should be described in terms of conformational ensembles rather than as individual structures, as is instead most often the case for the native states of globular proteins. Within this context, in this chapter we describe the conceptual tools and methodological aspects associated with the description of the structure and dynamics of IDPs in terms of conformational ensembles. A major emphasis is given to methods in which molecular simulations are used in combination with experimental nuclear magnetic resonance (NMR) measurements, as they are emerging as a powerful route to achieve an accurate determination of the conformational properties of IDPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://predictioncenter.org/.

  2. 2.

    IDPbyNMR (High resolution tools to understand the functional role of protein intrinsic disorder) is a Marie Curie activity funded under the FP7 people programme, project number 264257; http://www.idpbynmr.eu/home/.

  3. 3.

    http://pedb.vib.be/.

References

  • Baker CM, Best RB (2013) Matching of additive and polarizable force fields for multiscale condensed phase simulations. J Chem Theor Comp 9(6):2826–2837

    Article  CAS  Google Scholar 

  • BernadÏŒ P, Bertoncini CW, Griesinger C et al (2005) Defining long-range order and local disorder in native αsynuclein using residual dipolar couplings. J Am Chem Soc 127(51):17968–17969

    Article  CAS  PubMed  Google Scholar 

  • Best RB (2012) Atomistic molecular simulations of protein folding. Curr Op Struct Biol 22(1):52–61

    Article  CAS  Google Scholar 

  • Blundell TL, Johnson LN (1976) Protein crystallography. Academic Press, New York

    Google Scholar 

  • Board JA Jr, Causey JW, Leathrum JF Jr et al (1992) Accelerated molecular dynamics simulation with the parallel fast multipole algorithm. Chem Phys Lett 198(1):89–94

    Article  Google Scholar 

  • Boehr DD, Nussinov R, Wright PE (2009) The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol 5(11):789–796

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bonvin A, Brunger AT (1995) Conformational variability of solution nuclear-magnetic-resonance structures. J Mol Biol 250(1):80–93. doi:10.1006/jmbi.1995.0360

    Article  CAS  PubMed  Google Scholar 

  • Bonvin A, Boelens R, Kaptein R (1994) Time-averaged and ensemble-averaged direct NOE restraints. J Biomol NMR 4(1):143–149

    Article  CAS  PubMed  Google Scholar 

  • Boomsma W, Ferkinghoff-Borg J, Lindorff-Larsen K (2014) Combining experiments and simulations using the maximum entropy principle. PLoS Comp Biol 10(2):e1003406

    Article  Google Scholar 

  • Bottaro S, Lindorff-Larsen K, Best RB (2013) Variational optimization of an all-atom implicit solvent force field to match explicit solvent simulation data. J Chem Theor Comp 9(12):5641–5652

    Article  CAS  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD et al (1983) CHARMM—a program for macromolecular energy, minimization, and dynamics calculations. J Comp Chem 4(2):187–217

    Article  CAS  Google Scholar 

  • Brunger AT, Adams PD, Clore GM et al (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D 54:905–921

    Article  CAS  PubMed  Google Scholar 

  • Burgi R, Pitera J, van Gunsteren WF (2001) Assessing the effect of conformational averaging on the measured values of observables. J Biomol NMR 19(4):305–320. doi:10.1023/a:1011295422203

    Article  CAS  PubMed  Google Scholar 

  • Camilloni C, Vendruscolo M (2014) Statistical mechanics of the denatured state of a protein using replica-averaged metadynamics. J Am Chem Soc 136:8982–8991

    Google Scholar 

  • Camilloni C, Cavalli A, Vendruscolo M (2013) Replica-averaged metadynamics. J Chem Theor Comp 9(12):5610–5617

    Article  CAS  Google Scholar 

  • Cavalli A, Camilloni C, Vendruscolo M (2013) Molecular dynamics simulations with replica-averaged structural restraints generate structural ensembles according to the maximum entropy principle. J Chem Phys 138(9):094112

    Article  PubMed  Google Scholar 

  • Chandler D (1987) Introduction to modern statistical mechanics. Oxford University Press, New York

    Google Scholar 

  • Choy WY, Forman-Kay JD (2001) Calculation of ensembles of structures representing the unfolded state of an SH3 domain. J Mol Biol 308(5):1011–1032

    Article  CAS  PubMed  Google Scholar 

  • Clore GM, Schwieters CD (2004) How much backbone motion in ubiquitin is required to account for dipolar coupling data measured in multiple alignment media as assessed by independent cross-validation? J Am Chem Soc 126(9):2923–2938

    Article  CAS  PubMed  Google Scholar 

  • Constantine KL, Mueller L, Andersen NH et al (1995) Structural and dynamic properties of a βhairpin-forming linear peptide.1. Modeling using ensemble-averaged constraints. J Am Chem Soc 117(44):10841–10854. doi:10.1021/ja00149a007

    Article  CAS  Google Scholar 

  • Das R, Baker D (2008) Macromolecular modeling with Rosetta. Annu Rev Biochem 77:363–382

    Article  CAS  PubMed  Google Scholar 

  • Dedmon MM, Lindorff-Larsen K, Christodoulou J et al (2005) Mapping long-range interactions in αsynuclein using spin-label NMR and ensemble molecular dynamics simulations. J Am Chem Soc 127(2):476–477

    Article  CAS  PubMed  Google Scholar 

  • Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6(3):197–208

    Article  CAS  PubMed  Google Scholar 

  • Fennen J, Torda AE, van Gunsteren WF (1995) Structure refinement with molecular-dynamics and a Boltzmann-weighted ensemble. J Biomol NMR 6(2):163–170

    Article  CAS  PubMed  Google Scholar 

  • Fersht AR (1999) Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. W. H. Freeman, New York

    Google Scholar 

  • Francis CJ, Lindorff-Larsen K, Best RB et al (2006) Characterization of the residual structure in the unfolded state of the ∆131∆ fragment of staphylococcal nuclease. Proteins 65(1):145–152

    Article  CAS  PubMed  Google Scholar 

  • Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science 254(5038):1598–1603

    Article  CAS  PubMed  Google Scholar 

  • Gillespie JR, Shortle D (1997) Characterization of long-range structure in the denatured state of staphylococcal nuclease. 2. Distance restraints from paramagnetic relaxation and calculation of an ensemble of structures. J Mol Biol 268(1):170–184

    Article  CAS  PubMed  Google Scholar 

  • Grishaev A, Bax A (2004) An empirical backbone-backbone hydrogen-bonding potential in proteins and its applications to NMR structure refinement and validation. J Am Chem Soc 126(23):7281–7292

    Google Scholar 

  • Gsponer J, Hopearuoho H, Whittaker SBM et al (2006) Determination of an ensemble of structures representing the intermediate state of the bacterial immunity protein Im7. Proc Natl Acad Sci U S A 103(1):99–104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haas E (2005) The study of protein folding and dynamics by determination of intramolecular distance distributions and their fluctuations using ensemble and single-molecule FRET measurements. ChemPhysChem 6(5):858–870

    Article  CAS  PubMed  Google Scholar 

  • Heise H, Luca S, de Groot BL et al (2005) Probing conformational disorder in neurotensin by two-dimensional solid-state NMR and comparison to molecular dynamics simulations. Bioph J 89(3):2113–2120

    Article  CAS  Google Scholar 

  • Hornak V, Abel R, Okur A et al (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins 65(3):712–725

    Article  CAS  PubMed  Google Scholar 

  • Hub JS, De Groot BL, Van Der Spoel D (2010) g_wham—a free weighted histogram analysis implementation including robust error and autocorrelation estimates. J Chem Theor Comp 6(12):3713–3720

    Article  CAS  Google Scholar 

  • Karplus M, Kuriyan J (2005) Molecular dynamics and protein function. Proc Natl Acad Sci U S A 102(19):6679–6685

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kemmink J, Scheek RM (1995) Dynamic modeling of a helical peptide in solution using NMR data—multiple conformations and multi-spin effects. J Biomol NMR 6(1):33–40. doi:10.1007/bf00417489

    Article  CAS  PubMed  Google Scholar 

  • Kessler H, Griesinger C, Lautz J et al (1988) Conformational dynamics detected by nuclear magnetic-resonance NOE values and J-coupling constants. J Am Chem Soc 110(11):3393–3396. doi:10.1021/ja00219a008

    Article  CAS  Google Scholar 

  • Klein-Seetharaman J, Oikawa M, Grimshaw SB et al (2002) Long-range interactions within a nonnative protein. Science 295(5560):1719–1722

    Article  CAS  PubMed  Google Scholar 

  • Knott M, Best RB (2012) A preformed binding interface in the unbound ensemble of an intrinsically disordered protein: evidence from molecular simulations. PLoS Comp Biol 8(7):e1002605

    Article  CAS  Google Scholar 

  • Knowles TP, Vendruscolo M, Dobson CM (2014) The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol 15(6):384–396

    Article  CAS  PubMed  Google Scholar 

  • Korzhnev DM, Salvatella X, Vendruscolo M et al (2004) Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR. Nature 430(6999):586–590

    Article  CAS  PubMed  Google Scholar 

  • Krzeminski M, Marsh JA, Neale C et al (2013) Characterization of disordered proteins with ensemble. Bioinformatics 29(3):398–399

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Rosenberg JM, Bouzida D et al (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comp Chem 13(8):1011–1021

    Article  CAS  Google Scholar 

  • Laio A, Gervasio FL (2008) Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep Prog Phys 71(12):126601

    Article  Google Scholar 

  • Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci U S A 99(20):12562–12566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lange OF, Lakomek N-A, Farès C et al (2008) Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320(5882):1471–1475

    Article  CAS  PubMed  Google Scholar 

  • Lindorff-Larsen K, Kristjansdottir S, Teilum K et al (2004) Determination of an ensemble of structures representing the denatured state of the bovine acyl-coenzyme A binding protein. J Am Chem Soc 126(10):3291–3299

    Article  CAS  PubMed  Google Scholar 

  • Lindorff-Larsen K, Best RB, DePristo MA et al (2005) Simultaneous determination of protein structure and dynamics. Nature 433(7022):128–132

    Article  CAS  PubMed  Google Scholar 

  • Lindorff-Larsen K, Maragakis P, Piana S et al (2012a) Systematic validation of protein force fields against experimental data. PLoS ONE 7(2):e32131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lindorff-Larsen K, Trbovic N, Maragakis P et al (2012b) Structure and dynamics of an unfolded protein examined by molecular dynamics simulation. J Am Chem Soc 134(8):3787–3791

    Article  CAS  PubMed  Google Scholar 

  • Markwick PR, Bouvignies G, Blackledge M (2007) Exploring multiple timescale motions in protein GB3 using accelerated molecular dynamics and NMR spectroscopy. J Am Chem Soc 129(15):4724–4730

    Article  CAS  PubMed  Google Scholar 

  • Mittermaier A, Kay LE (2006) New tools provide new insights in NMR studies of protein dynamics. Science 312(5771):224–228

    Article  CAS  PubMed  Google Scholar 

  • Moglich A, Joder K, Kiefhaber T (2006) End-to-end distance distributions and intrachain diffusion constants in unfolded polypeptide chains indicate intramolecular hydrogen bond formation. Proc Natl Acad Sci U S A 103(33):12394–12399

    Article  PubMed Central  PubMed  Google Scholar 

  • Monticelli L, Kandasamy SK, Periole X et al (2008) The Martini coarse-grained force field: extension to proteins. J Chem Theor Comp 4(5):819–834

    Article  CAS  Google Scholar 

  • Moult J, Fidelis K, Kryshtafovych A et al (2014) Critical assessment of methods of protein structure prediction (CASP)—round X. Proteins 82(S2):1–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Piana S, Klepeis JL, Shaw DE (2014) Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations. Curr Op Struct Biol 24:98–105

    Article  CAS  Google Scholar 

  • Pitera JW, Chodera JD (2012) On the use of experimental observations to bias simulated ensembles. J Chem Theor Comp 8(10):3445–3451

    Article  CAS  Google Scholar 

  • Rosato A, Bagaria A, Baker D et al (2009) CASD-NMR: critical assessment of automated structure determination by NMR. Nat Methods 6(9):625–626

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rosato A, Aramini JM, Arrowsmith C et al (2012) Blind testing of routine, fully automated determination of protein structures from NMR data. Structure 20(2):227–236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roux B, Weare J (2013) On the statistical equivalence of restrained-ensemble simulations with the maximum entropy method. J Chem Phys 138(8):084107

    Article  PubMed Central  PubMed  Google Scholar 

  • Schuler B, Lipman EA, Eaton WA (2002) Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature 419(6908):743–747

    Article  CAS  PubMed  Google Scholar 

  • Schwieters CD, Kuszewski JJ, Clore GM (2006) Using Xplor-NIH for NMR molecular structure determination. Prog Nucl Mag Res Spectrosc 48(1):47–62

    Article  CAS  Google Scholar 

  • Shaw DE, Maragakis P, Lindorff-Larsen K et al (2010) Atomic-level characterization of the structural dynamics of proteins. Science 330(6002):341–346

    Article  CAS  PubMed  Google Scholar 

  • Sherman E, Haran G (2006) Coil-globule transition in the denatured state of a small protein. Proc Natl Acad Sci U S A 103(31):11539–11543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith LJ, Bolin KA, Schwalbe H et al (1996) Analysis of main chain torsion angles in proteins: Prediction of NMR coupling constants for native and random coil conformations. J Mol Biol 255(3):494–506

    Article  CAS  PubMed  Google Scholar 

  • Spronk C, Nabuurs SB, Krieger E et al (2004) Validation of protein structures derived by NMR spectroscopy. Prog Nucl Mag Res Spectrosc 45(3–4):315–337

    Article  CAS  Google Scholar 

  • Torda AE, Scheek RM, van Gunsteren WF (1989) Time-dependent distance restraints in molecular-dynamics simulations. Chem Phys Lett 157(4):289–294. doi:10.1016/0009-2614(89)87249-5

    Article  CAS  Google Scholar 

  • Tozzini V (2005) Coarse-grained models for proteins. Curr Op Struct Biol 15(2):144–150

    Article  CAS  Google Scholar 

  • Uversky VN (2013) A decade and a half of protein intrinsic disorder: Biology still waits for Physics. Protein Sci 22(6):693–724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van Kampen NG (1992) Stochastic processes in physics and chemistry. North-Holland, Amsterdam, New York

    Google Scholar 

  • Varadi M, Kosol S, Lebrun P et al (2014) pE-DB: A database of structural ensembles of intrinsically disordered and of unfolded proteins. Nucl Acids Res 42(D1):D326–D335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vendruscolo M, Dobson CM (2006) Dynamic visions of enzymatic reactions. Science 313(5793):1586–1587

    Article  CAS  PubMed  Google Scholar 

  • Vendruscolo M (2007) Structure determination of highly heterogenous states of proteins. Curr Op Struct Biol 17:15–20

    Google Scholar 

  • Vendruscolo M, Dobson CM (2011) Protein dynamics: Moore’s law in molecular biology. Curr Biol 21(2):R68–R70

    Article  CAS  PubMed  Google Scholar 

  • Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New York

    Google Scholar 

  • Zhu F, Hummer G (2012) Convergence and error estimation in free energy calculations using the weighted histogram analysis method. J Comp Chem 33(4):453–465

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Vendruscolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fu, B., Vendruscolo, M. (2015). Structure and Dynamics of Intrinsically Disordered Proteins. In: Felli, I., Pierattelli, R. (eds) Intrinsically Disordered Proteins Studied by NMR Spectroscopy. Advances in Experimental Medicine and Biology, vol 870. Springer, Cham. https://doi.org/10.1007/978-3-319-20164-1_2

Download citation

Publish with us

Policies and ethics