Skip to main content
Log in

A quicker degradation rate is yielded by a novel kind of transgenic silk fibroin consisting of shortened silk fibroin heavy chains fused with matrix metalloproteinase cleavage sites

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Degradation performance of silk fibroin is an important property for its medical applications. Herein we constructed a shortened silk fibroin heavy chain protein fused with a matrix metalloproteinase cleavage site (SSFH-MMP) along with a glutathione S-transferase tag ahead. The digestion assay shows it can be cut by matrix metalloproteinase-2 (MMP-2) at its MMP cleavage site. Furthermore, we introduced the SSFH-MMP into silk fibroin by genetic modification of silkworms in order to increase the degradation rate of the silk fibroin. After acquisition of a race of transgenic silkworms with the coding sequence of the MMP cleavage site in their genomic DNA, we tested some properties of their silk fibroin designated TSF-MMP. The results show that the TSF-MMP has MMP cleavage sites and yields a quicker degradation rate during dilution in MMP-2 enzyme buffer or implantation into tumor tissues compared with that of normal silk fibroin. Moreover, the TSF-MMP is in vitro non-toxic to human bone marrow mesenchymal stem cells (hBM-MSCs) indicating that the TSF-MMP may become a biomaterial with a quicker degradation rate for its medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lammel AS, Hu X, Park SH, Kaplan DL, Scheibel TR. Controlling silk fibroin particle features for drug delivery. Biomaterials. 2010;31(16):4583–91. doi:10.1016/j.biomaterials.2010.02.024.

    Article  Google Scholar 

  2. Wenk E, Merkle HP, Meinel L. Silk fibroin as a vehicle for drug delivery applications. J Control Release. 2011;150(2):128–41. doi:10.1016/j.jconrel.2010.11.007.

    Article  Google Scholar 

  3. Bayraktar O, Malay O, Ozgarip Y, Batigun A. Silk fibroin as a novel coating material for controlled release of theophylline. Eur J Pharm Biopharm. 2005;60(3):373–81. doi:10.1016/j.ejpb.2005.02.002.

    Article  Google Scholar 

  4. Zhang F, Zuo B, Fan Z, Xie Z, Lu Q, Zhang X, et al. Mechanisms and control of silk-based electrospinning. Biomacromolecules. 2012;13(3):798–804. doi:10.1021/bm201719s.

    Article  Google Scholar 

  5. Wray LS, Hu X, Gallego J, Georgakoudi I, Omenetto FG, Schmidt D, et al. Effect of processing on silk-based biomaterials: reproducibility and biocompatibility. J Biomed Mater Res B Appl Biomater. 2011;99(1):89–101. doi:10.1002/jbm.b.31875.

    Article  Google Scholar 

  6. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, et al. Silk-based biomaterials. Biomaterials. 2003;24(3):401–16.

    Article  Google Scholar 

  7. Wang Y, Rudym DD, Walsh A, Abrahamsen L, Kim HJ, Kim HS, et al. In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials. 2008;29(24–25):3415–28. doi:10.1016/j.biomaterials.2008.05.002.

    Article  Google Scholar 

  8. Lawrence BD, Wharram S, Kluge JA, Leisk GG, Omenetto FG, Rosenblatt MI, et al. Effect of hydration on silk film material properties. Macromol Biosci. 2010;10(4):393–403. doi:10.1002/mabi.200900294.

    Article  Google Scholar 

  9. Hofmann S, Foo CT, Rossetti F, Textor M, Vunjak-Novakovic G, Kaplan DL, et al. Silk fibroin as an organic polymer for controlled drug delivery. J Control Release. 2006;111(1–2):219–27. doi:10.1016/j.jconrel.2005.12.009.

    Article  Google Scholar 

  10. Cao Y, Wang B. Biodegradation of silk biomaterials. Int J Mol Sci. 2009;10(4):1514–24. doi:10.3390/ijms10041514.

    Article  Google Scholar 

  11. Arai T, Freddi G, Innocenti R, Tsukada M. Biodegradation of Bombyx mori silk fibroin fibers and films. J Appl Polym Sci. 2004;91(4):2383–90. doi:10.1002/app.13393.

    Article  Google Scholar 

  12. Horan RL, Antle K, Collette AL, Wang Y, Huang J, Moreau JE, et al. In vitro degradation of silk fibroin. Biomaterials. 2005;26(17):3385–93. doi:10.1016/j.biomaterials.2004.09.020.

    Article  Google Scholar 

  13. Lu Q, Zhang B, Li M, Zuo B, Kaplan DL, Huang Y, et al. Degradation mechanism and control of silk fibroin. Biomacromolecules. 2011;12(4):1080–6. doi:10.1021/bm101422j.

    Article  Google Scholar 

  14. Durselen L, Dauner M, Hierlemann H, Planck H, Claes LE, Ignatius A. Resorbable polymer fibers for ligament augmentation. J Biomed Mater Res. 2001;58(6):666–72. doi:10.1002/jbm.1067.

    Article  Google Scholar 

  15. Dunn MG, Avasarala PN, Zawadsky JP. Optimization of extruded collagen fibers for ACL reconstruction. J Biomed Mater Res. 1993;27(12):1545–52. doi:10.1002/jbm.820271211.

    Article  Google Scholar 

  16. Lu L, Peter SJ, Lyman MD, Lai HL, Leite SM, Tamada JA, et al. In vitro and in vivo degradation of porous poly(dl-lactic-co-glycolic acid) foams. Biomaterials. 2000;21(18):1837–45.

    Article  Google Scholar 

  17. Newman SD, Atkinson HD, Willis-Owen CA. Anterior cruciate ligament reconstruction with the ligament augmentation and reconstruction system: a systematic review. Int Orthop. 2013;37(2):321–6. doi:10.1007/s00264-012-1654-y.

    Article  Google Scholar 

  18. Kumar K, Maffulli N. The ligament augmentation device: an historical perspective. Arthroscopy. 1999;15(4):422–32.

    Article  Google Scholar 

  19. Richmond JC, Manseau CJ, Patz R, McConville O. Anterior cruciate reconstruction using a Dacron ligament prosthesis. A long-term study. Am J Sports Med. 1992;20(1):24–8.

    Article  Google Scholar 

  20. McConkey P. The anterior cruciate ligament: current and future concepts. Clin J Sport Med. 1994;4(3):204.

    Article  Google Scholar 

  21. Altman GH, Horan RL, Lu HH, Moreau J, Martin I, Richmond JC, et al. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials. 2002;23(20):4131–41.

    Article  Google Scholar 

  22. Kojima K, Kuwana Y, Sezutsu H, Kobayashi I, Uchino K, Tamura T, et al. A new method for the modification of fibroin heavy chain protein in the transgenic silkworm. Biosci Biotechnol Biochem. 2007;71(12):2943–51.

    Article  Google Scholar 

  23. de Moraes MA, Weska RF, Beppu MM. Effects of sterilization methods on the physical, chemical, and biological properties of silk fibroin membranes. J Biomed Mater Res Part B, Appl Biomater. 2013;. doi:10.1002/jbm.b.33069.

    Google Scholar 

  24. Suzuki Y, Yamazaki T, Aoki A, Shindo H, Asakura T. NMR study of the structures of repeated sequences, GAGXGA (X = S, Y, V), in Bombyx mori liquid silk. Biomacromolecules. 2013;. doi:10.1021/bm401346h.

    Google Scholar 

  25. Long DP, Zhao AC, Chen XJ, Zhang Y, Lu WJ, Guo Q, et al. FLP recombinase-mediated site-specific recombination in silkworm, Bombyx mori. PLoS One. 2012;7(6):e40150. doi:10.1371/journal.pone.0040150.

    Article  Google Scholar 

  26. Huang G, Li G, Chen H, He Y, Yao Q, Chen K. Proteomic analysis of 3T3-L1 preadipocytes having a higher cell proliferation rate after treatment with low-molecular-weight silk fibroin peptides. Cell Prolif. 2010;43(5):515–27. doi:10.1111/j.1365-2184.2010.00701.x.

    Article  Google Scholar 

  27. Kumari SS, Subbarao SV, Misra S, Murty US. Screening strains of the mulberry silkworm, Bombyx mori, for thermotolerance. J Insect Sci. 2011;11:116. doi:10.1673/031.011.11601.

    Article  Google Scholar 

  28. Waga S, Mizuno S. Different behavior of chromatin domains encompassing fibroin heavy-chain gene in active, temporarily inactive, and permanently inactive transcriptional states in silk gland nuclei. J Biol Chem. 1993;268(9):6429–36.

    Google Scholar 

  29. Takiya S, Hui CC, Suzuki Y. A contribution of the core-promoter and its surrounding regions to the preferential transcription of the fibroin gene in posterior silk gland extracts. EMBO J. 1990;9(2):489–96.

    Google Scholar 

  30. Diez-Torre A, Diaz-Nunez M, Eguizabal C, Silvan U, Arechaga J. Evidence for a role of matrix metalloproteinases and their inhibitors in primordial germ cell migration. Andrology. 2013;1(5):779–86. doi:10.1111/j.2047-2927.2013.00109.x.

    Article  Google Scholar 

  31. Janssens E, Gaublomme D, De Groef L, Darras VM, Arckens L, Delorme N, et al. Matrix metalloproteinase 14 in the zebrafish: an eye on retinal and retinotectal development. PLoS One. 2013;8(1):e52915. doi:10.1371/journal.pone.0052915.

    Article  Google Scholar 

  32. Sundrani D, Chavan-Gautam P, Pisal H, Mehendale S, Joshi S. Matrix metalloproteinases-2, -3 and tissue inhibitors of metalloproteinases-1, -2 in placentas from preterm pregnancies and their association with one-carbon metabolites. Reproduction (Cambridge, England). 2013;145(4):401–10. doi:10.1530/rep-12-0520.

    Article  Google Scholar 

  33. Pinlaor S, Prakobwong S, Boonmars T, Wongkham C, Pinlaor P, Hiraku Y. Effect of praziquantel treatment on the expression of matrix metalloproteinases in relation to tissue resorption during fibrosis in hamsters with acute and chronic Opisthorchis viverrini infection. Acta Trop. 2009;111(2):181–91. doi:10.1016/j.actatropica.2009.04.011.

    Article  Google Scholar 

  34. Zitka O, Kukacka J, Krizkova S, Huska D, Adam V, Masarik M, et al. Matrix metalloproteinases. Curr Med Chem. 2010;17(31):3751–68.

    Article  Google Scholar 

  35. Yang R, Xu Y, Li P, Zhang X, Wang J, Gu D, et al. Combined upregulation of matrix metalloproteinase-1 and proteinase-activated receptor-1 predicts unfavorable prognosis in human nasopharyngeal carcinoma. OncoTargets Ther. 2013;6:1139–46. doi:10.2147/OTT.S50389.

    Google Scholar 

  36. Budsberg SC, Stoker AM, Johnston SA, Liska W, Reno LR, Cook JL. In vitro effects of meloxicam on metabolism in articular chondrocytes from dogs with naturally occurring osteoarthritis. Am J Vet Res. 2013;74(9):1198–205. doi:10.2460/ajvr.74.9.1198.

    Article  Google Scholar 

  37. Vessillier S, Adams G, Chernajovsky Y. Latent cytokines: development of novel cleavage sites and kinetic analysis of their differential sensitivity to MMP-1 and MMP-3. Protein Eng Des Sel. 2004;17(12):829–35. doi:10.1093/protein/gzh097.

    Article  Google Scholar 

  38. Grams F, Brandstetter H, D’Alo S, Geppert D, Krell HW, Leinert H, et al. Pyrimidine-2,4,6-Triones: a new effective and selective class of matrix metalloproteinase inhibitors. Biol Chem. 2001;382(8):1277–85. doi:10.1515/BC.2001.159.

    Article  Google Scholar 

  39. Shimokawa K, Katayama M, Matsuda Y, Takahashi H, Hara I, Sato H, et al. Matrix metalloproteinase (MMP)-2 and MMP-9 activities in human seminal plasma. Mol Hum Reprod. 2002;8(1):32–6.

    Article  Google Scholar 

  40. Zhang Y, Dean WL, Gray RD. Cooperative binding of Ca2+ to human interstitial collagenase assessed by circular dichroism, fluorescence, and catalytic activity. J Biol Chem. 1997;272(3):1444–7.

    Article  Google Scholar 

  41. Murphy G, Knauper V, Atkinson S, Butler G, English W, Hutton M, et al. Matrix metalloproteinases in arthritic disease. Arthritis Res. 2002;4(Suppl 3):S39–49.

    Article  Google Scholar 

  42. Shin YJ, Kim JH. The role of EZH2 in the regulation of the activity of matrix metalloproteinases in prostate cancer cells. PLoS One. 2012;7(1):e30393. doi:10.1371/journal.pone.0030393.

    Article  Google Scholar 

  43. Shuman Moss LA, Jensen-Taubman S, Stetler-Stevenson WG. Matrix metalloproteinases: changing roles in tumor progression and metastasis. Am J Pathol. 2012;181(6):1895–9. doi:10.1016/j.ajpath.2012.08.044.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from National Natural Science Foundation of China (31100118, 31272507); the Science and Technology Support Program (social development) of the Jiangsu Province, China. No. BE2010705; Special Fund of China Postdoctoral Science Foundation, No. 201003560; the Jiangsu Government Scholarship for Overseas Studies; the Startup Scientific Research Fund from Jiangsu University for Advanced Professionals, No. 08JDG035; Natural Science Foundation of Jiangsu Province (BK2011495); The National Basic Research Program of China (No. 2012CB114604); The student scientific research project of Jiangsu University, No. 11A452.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoping Huang or Keping Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Yang, D., Sun, C. et al. A quicker degradation rate is yielded by a novel kind of transgenic silk fibroin consisting of shortened silk fibroin heavy chains fused with matrix metalloproteinase cleavage sites. J Mater Sci: Mater Med 25, 1833–1842 (2014). https://doi.org/10.1007/s10856-014-5220-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5220-6

Keywords

Navigation