Skip to main content
Log in

Development and characterization of reinforced poly(l-lactide) scaffolds for bone tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Novel reinforced poly(l-lactic acid) (PLLA) scaffolds such as solid shell, porous shell, one beam and two beam reinforced scaffolds were developed to improve the mechanical properties of a standard PLLA scaffold. Experimental results clearly indicated that the compressive mechanical properties such as the strength and the modulus are effectively improved by introducing the reinforcement structures. A linear elastic model consisting of three phases, that is, the reinforcement, the porous matrix and the boundary layer was also introduced in order to predict the compressive moduli of the reinforced scaffolds. The comparative study clearly showed that the simple theoretical model can reasonably predict the moduli of the scaffolds with three phase structures. The failure mechanism of the solid shell and the porous shell reinforced scaffolds under compression were found to be buckling of the solid shell and localized buckling of the struts constructing the pores in the porous shell, respectively. For the beam reinforced scaffolds, on the contrary, the primary failure mechanism was understood to be micro-cracking within the beams and the subsequent formation of the main-crack due to the coalescence of the micro-racks. The biological study was exhibited that osteoblast-like cells, MC3T3-E1, were well adhered and proliferated on the surfaces of the scaffolds after 12 days culturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. De Bore HH. The history of bone grafts. Clin Orthop Relat Res. 1988;226:292–8.

    Google Scholar 

  2. Vacanti CA, Kim W, Upton J, et al. Tissue-engineered growth of bone and cartilage. Transplant Proc. 1993;25:1019–21.

    CAS  Google Scholar 

  3. Dolde JVD, Farber E, Spauwen PHM, Jansen JA. Bone tissue reconstruction using titanium fiber mesh combined with rat bone marrow stromal cells. Biomaterials. 2003;24:1745–50.

    Article  Google Scholar 

  4. Nienhuijs MEL, Walboomers XF, Merkx MAW, et al. Bone-like tissue formation using an equine COLLOSS® E-filled titanium scaffolding material. Biomaterials. 2006;27:3109–14.

    Article  CAS  Google Scholar 

  5. Fujibayashi S, Neo M, Kim HM, et al. Osteoinduction of porous bioactive titanium metal. Biomaterials. 2004;25:443–50.

    Article  CAS  Google Scholar 

  6. Li JP, Wijn JRD, Blitterswijk CAV, Groot KD. Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment. Biomaterials. 2006;27:1223–35.

    Article  CAS  Google Scholar 

  7. Dellinger JG, Eurell JAC, Jamison RD. Bone response to 3D periodic hydroxyapatite scaffolds with and without tailored microporosity to deliver bone morphogenetic protein 2. J Biomed Mater Res. 2005;76A:366–76.

    Article  Google Scholar 

  8. Deville S, Saiz E, Tomsia AP. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials. 2006;27:5480–9.

    Article  CAS  Google Scholar 

  9. Yuan H, Bruijn JD, Li Y, et al. Bone formation induced by calcium phosphate ceramics in soft tissue of dogs: a comparative study between porous α-TCP and β-TCP. J Mater Sci Mater Med. 2001;12:7–13.

    Article  CAS  Google Scholar 

  10. Wiltfang J, Merten HA, Schlegel KA, et al. Degradation characteristics of α and β tri-calcium-phosphate (TCP) in minipigs. J Biomed Mater Res. 2002;63:115–21.

    Article  CAS  Google Scholar 

  11. Reverchon E, Cardea S, Rapuano C. A new supercritical fluid-based process to produce scaffolds for tissue replacement. J Supercrit Fluids. 2008;45:365–73.

    Article  CAS  Google Scholar 

  12. Todo M, Kuraoka H, Kim JW, et al. Deformation behavior and mechanism of porous PLLA under compression. J Mater Sci. 2008;43:5644–6.

    Article  CAS  Google Scholar 

  13. Lin ASP, Barrows TH, Cartmell SH, Guldberg RE. Microarchitectural and mechanical characterization of oriented porous polymer scaffolds. Biomaterials. 2003;24:481–9.

    Article  CAS  Google Scholar 

  14. MA L, Gao C, Mao Z, et al. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials. 2003;24:4833–41.

    Article  CAS  Google Scholar 

  15. Seda Tığlı R, Karakeçili A, Gümüşderelioğlu M. In vitro characterization of chitosan scaffolds: influence of composition and deacetylation degree. J Mater Sci Mater Med. 2007;18:1665–74.

    Article  Google Scholar 

  16. Ghosh S, Viana JC, Reis RL, Mano JF. Bi-layered constructs based on poly(l-lactic acid) and starch for tissue engineering of osteochondral defects. Mater Sci Eng C. 2008;28:80–6.

    Article  CAS  Google Scholar 

  17. Wei G, Ma PX. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials. 2004;25:4749–57.

    Article  CAS  Google Scholar 

  18. Miao X, Tan DM, Li J, Xiao Y, Crawford R. Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid). Acta Biomater. 2008;4:638–45.

    Article  CAS  Google Scholar 

  19. Yang XB, Webb D, Blaker J, et al. Evaluation of human bone marrow stromal cell growth on biodegradable polymer/bioglass composites. Biochem Biophys Res Commun. 2006;342:1098–107.

    Article  CAS  Google Scholar 

  20. Yamamoto M, Takahashi Y, Hokugo A, Tabata Y. Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and b-tricalcium phosphate. Biomaterials. 2005;26:4856–65.

    Article  Google Scholar 

  21. Tanaka T, Eguchi S, Satoh H, et al. Microporous foams of polymer blends of poly(l-lactic acid) and poly(ε-caprolactone). Desalination. 2008;234:175–83.

    Article  CAS  Google Scholar 

  22. Oron A, Agar G, Oron U, Stein A. Correlation between rate of bony ingrowth to stainless steel, pure titanium, and titanium alloy implants in vivo and formation of hydroxyapetite on their surfaces in vitro. J Biomed Mater Res. 2008;91A:1006–9.

    Article  Google Scholar 

  23. Wall EJ, Jain V, Vora V, Mehlman CT, Crawford AH. Complications of titanium and stainless steel elastic nail fixation of pediatric femoral fractures. J Bone Joint Surg Am. 2008;90:1305–13.

    Article  Google Scholar 

  24. Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mecha Behav Biomed Mater. 2008;1:30–42.

    Article  Google Scholar 

  25. Zhang E, Xu L, Yu G, et al. In vivo evaluation of biodegradable magnesium alloy bone implant in the first 6 months implantation. J Biomed Mater Res. 2009;90A:882–93.

    Article  CAS  Google Scholar 

  26. Chen J, Birch MA, Bull SJ. Nanomechanical characterization of tissue engineered bone grown on titanium alloy in vitro. J Mater Sci Mater Med. 2010;21:277–82.

    Article  CAS  Google Scholar 

  27. Tadic D, Beckmann F, Schwarz K, Epple M. A novel method to produce hydroxyapatite objects with interconnectingporosity that avoids sintering. Biomaterials. 2004;25:3335–40.

    Article  CAS  Google Scholar 

  28. Matsumura K, Hyon SH, Nakajima N, et al. Surface modification of poly(ethylene-co-vinyl alcohol): hydroxyapatite immobilization and control of periodontal ligament cells differentiation. Biomaterials. 2004;25:4817–24.

    Article  CAS  Google Scholar 

  29. Webster TJ, Ergun C, Doremus RH, et al. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials. 2000;21:1803–10.

    Article  CAS  Google Scholar 

  30. Chen QZ, Efthymiou A, Salih V, Boccaccini AR. Bioglass®-derived glass–ceramic scaffolds: study of cell proliferation and scaffold degradation in vitro. J Biomed Mater Res. 2007;84A:1049–60.

    Article  Google Scholar 

  31. Bignon A, Chouteau J, Chevalier J, et al. Effect of micro- and macroporosity of bone substitutes on their mechanical properties and cellular response. J Mater Sci Mater Med. 2003;14:1089–97.

    Article  CAS  Google Scholar 

  32. Peroglio M, Gremillard L, Chevalier J, et al. Toughening of bio-ceramics scaffolds by polymer coating. J Eur Ceram Soc. 2007;27:2679–85.

    Article  CAS  Google Scholar 

  33. Rezwana K, Chena QZ, Blakera JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:3413–31.

    Article  Google Scholar 

  34. Todo M, Park JE, Kuraoka H, et al. Compressive deformation behavior of porous PLLA/PCL polymer blend. J Mater Sci. 2009;44:4191–4.

    Article  CAS  Google Scholar 

  35. Kim SS, Park MS, Jeon OJ, et al. Poly(lactide-co-glycolide) hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterals. 2006;27:1399–409.

    Article  CAS  Google Scholar 

  36. Simon JL, Rekow ED, Thompson VP, et al. MicroCT analysis of hydroxyapatite bone repair scaffolds created via three-dimensional printing for evaluating the effects of scaffold architecture on bone ingrowth. J Biomed Mater Res. 2007;85A:371–7.

    Article  Google Scholar 

  37. George J, Kuboki Y, Miyata T. Differentiation of mesenchymal stem cells into osteoblasts on honeycomb collagen scaffolds. Biotech Bioeng. 2006;95:404–11.

    Article  CAS  Google Scholar 

  38. Yunos DM, Bretcanu O, Boccaccini AR. Polymer-bioceramic composites for tissue engineering scaffolds. J Mater Sci. 2008;43:4433–42.

    Article  Google Scholar 

  39. Kang Y, Yin G, Yuan Q, et al. Preparation of poly(l-lactic acid)/β-tricalcium phosphate scaffold for bone tissue engineering without organic solvent. Mater Lett. 2008;62:2029–32.

    Article  CAS  Google Scholar 

  40. O’Brien FJ, Harley BA, Yannas IV, Gibson LJ. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials. 2005;26:433–41.

    Article  Google Scholar 

  41. Georgiou G, Mathieu L, Pioletti DP, et al. Polylactic acid–phosphate glass composite foams as scaffolds for bone tissue engineering. J Biomed Mater Res. 2007;80B:322–31.

    Article  CAS  Google Scholar 

  42. Tsivintzelis I, Pavlidou E, Panayiotou C. Porous scaffolds prepared by phase inversion using supercritical CO2 as antisolvent: I. Poly(l-lactic acid). J Supercrit Fluids. 2007;40:317–22.

    Article  CAS  Google Scholar 

  43. Maquet V, Boccaccini AR, Pravata L, et al. Preparation, characterization, and in vitro degradation of bioresorbable and bioactive composites based on Bioglass®-filled polylactide foams. J Biomed Mater Res. 2003;66A:335–46.

    Article  CAS  Google Scholar 

  44. Ang TH, Sultana FSA, Hutmacher DW, et al. Fabrication of 3D chitosan–hydroxyapatite scaffolds using a robotic dispensing system. Mater Sci Eng C. 2002;20:35–42.

    Article  Google Scholar 

  45. Teng X, Ren J, Gu S. Preparation and characterization of porous PDLLA/HA composite foams by supercritical carbon dioxide technology. J Biomed Mater Res. 2006;81B:185–93.

    Article  Google Scholar 

  46. Oh SH, Park IK, Kim JM, Lee JH. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials. 2007;28:1664–71.

    Article  CAS  Google Scholar 

  47. Murphy CM, Haugh MG, O’Brien FJ. The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 2010;31:461–6.

    Article  CAS  Google Scholar 

  48. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–91.

    Article  CAS  Google Scholar 

  49. He X, Lu H, Kawazoe N, Tateishi T, Chen G. A novel cylinder-type poly(l-lactic acid)–collagen hybrid sponge for cartilage tissue engineering. Tissue Eng C Methods. 2010;16:329–38.

    Article  CAS  Google Scholar 

  50. Young CS, Terada S, Vacanti JP, et al. Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res. 2002;81:695–700.

    Article  CAS  Google Scholar 

  51. Tu C, Cai Q, Yang J, et al. The fabrication and characterization of poly(lactic acid) scaffolds for tissue engineering by improved solid-liquid phase separation. Polym Adv Technol. 2003;14:565–73.

    Article  CAS  Google Scholar 

  52. Hu FJ, Park TG, Lee DS. A facile preparation of highly interconnected macroporous poly(d, l-lactic acid-co-glycolic acid) (PLGA) scaffolds by liquid–liquid phase separation of a PLGA–dioxane–water ternary system. Polymer. 2003;44:1911–20.

    Article  Google Scholar 

  53. Woo KM, Seo JH, Zhang R, Ma PX. Suppression of apoptosis by enhanced protein adsorption on polymer/hydroxyapatite composite scaffolds. Biomaterials. 2007;28:2622–30.

    Article  CAS  Google Scholar 

  54. Park JE, Todo M. Development of layered porous poly(l-lactide) for bone regeneration. J Mater Sci. 2010;45:3966–8.

    Article  CAS  Google Scholar 

  55. Li X, Feng Q, Cui F. In vitro degradation of porous nano-hydroxyapatite collagen PLLA scaffold reinforced by chitin fibres. Mater Sci Eng C. 2006;26:716–20.

    Article  CAS  Google Scholar 

  56. Liu HC, Lee IC, Wang JH, et al. Preparation of PLLA membraines with different morphologies for culture of MG-63 cells. Biomaterials. 2003;25:4047–56.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsugu Todo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, JE., Todo, M. Development and characterization of reinforced poly(l-lactide) scaffolds for bone tissue engineering. J Mater Sci: Mater Med 22, 1171–1182 (2011). https://doi.org/10.1007/s10856-011-4289-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4289-4

Keywords

Navigation