Skip to main content
Log in

Designing and simulating of NiO@Graphite asymmetric supercapacitor device using thermally optimized nickel oxide electrode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this manuscript, we have produced nickel oxide thin films by facetious spray pyrolysis method at different deposition temperatures for the supercapacitor application. The impact of physical properties and chemical compositions of the prepared electrodes is also studied in this manuscript. Among all prepared samples, AT-2 (with deposition temperature 375 °C) is found to be the finest electrode for supercapacitor execution with an excellent specific capacitance of 256.52 Fg−1 at 0.002-V scan rate by cyclic voltammetry. The same electrode shows a specific capacitance of 18.60 Fg−1 by GCD analysis and parades an energy density of 36.47 Whkg−1 with a power density of 9.91 Wkg−1 at 0.001-A current density. The synthesized NiO@AT-2 electrode shows 78% and 71% stability in specific capacitance after 5000 CV and GCD cycles, respectively. The advanced specific capacitance of the AT-2 electrode is credited to its greater superficial expanse, the greater quantity of active positions, and inferior charge transfer resistance. Furthermore, the AT-2 nano-granular electrode is further used to fabricate for asymmetric supercapacitor device with a graphite electrode. The fabricated asymmetric device shows a specific capacitance of 61.37 Fg−1 at 0.002-Vs−1 scan rate and parades a higher energy density of 75.30 Whkg−1 with a power density of 1.16 Wkg−1 at 0.02-mA current density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary material. Raw data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M.A. Rosen, Energy sustainability with a focus on environmental perspectives. Earth Syst. Environ. 5, 217–230 (2021). https://doi.org/10.1007/s41748-021-00217-6

    Article  PubMed  PubMed Central  Google Scholar 

  2. L. Al-Ghussain, R. Samu, O. Taylan, M. Fahrioglu, Sizing renewable energy systems with energy storage systems in microgrids for maximum cost-efficient utilization of renewable energy resources. Sustain. Cities Soc. 55, 102059 (2020). https://doi.org/10.1016/j.scs.2020.102059

    Article  Google Scholar 

  3. M. Hasanuzzaman, M.A. Islam, N.A. Rahim, Y Yanping, Chapter 3—Energy demand. in Energy for Sustainable Development Demand, Supply, Conversion and Management (2020), pp. 41–87. https://doi.org/10.1016/B978-0-12-814645-3.00003-1

  4. N. Verma, V. Sharma, Energy value stream mapping a tool to develop green manufacturing. Procedia Eng. 149, 526–534 (2016). https://doi.org/10.1016/j.proeng.2016.06.701

    Article  Google Scholar 

  5. M. Armand, P. Axmann, D. Bresser, M. Copley, K. Edström, C. Ekberg, D. Guyomard, B. Lestriez, P. Novák, M. Petranikova, W. Porcher, Lithium-ion batteries–current state of the art and anticipated developments. J. Power Sources 459, 22807 (2020). https://doi.org/10.1016/j.jpowsour.2020.228073

    Article  CAS  Google Scholar 

  6. P. Ratajczak, M.E. Suss, F. Kaasik, F. Béguin, Carbon electrodes for capacitive technologies. Energy Storage Mater. 16, 126–145 (2019). https://doi.org/10.1016/j.ensm.2018.04.031

    Article  Google Scholar 

  7. Y. Lv, L. Ding, X. Wu et al., Coal-based 3D hierarchical porous carbon aerogels for high performance and super-long-life supercapacitors. Sci. Rep. 10, 7022 (2020). https://doi.org/10.1038/s41598-020-64020-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. S.V. Khavale, B.J. Lokhande, Electrochemical performance of potentio-dynamically deposited Co3O4 electrodes: influence of annealing temperature. J. Mater. Sci. 28, 5106–5115 (2017). https://doi.org/10.1007/s10854-016-6166-x

    Article  CAS  Google Scholar 

  9. R.S. Ingole, B.Y. Fugare, B.J. Lokhande, Ultrahigh specific capacitance of spray deposited nanoporous interconnected ruthenium oxide electrode fabric for supercharged capacitor. J. Mater. Sci. 28, 16374–16383 (2017). https://doi.org/10.1007/s10854-017-7548-4

    Article  CAS  Google Scholar 

  10. R.C. Ambare, B.J. Lokhande, Solution concentration and decomposition temperature-dependent electrochemical behavior of aqueous route spray pyrolyzed Mn3O4: supercapacitive approach. J. Mater. Sci. 28, 12246–12252 (2017). https://doi.org/10.1007/s10854-017-7040-1

    Article  CAS  Google Scholar 

  11. B.Y. Fugare, B.J. Lokhande, The influence of concentration on the morphology of TiO2 thin films prepared by spray pyrolysis for electrochemical study. Appl. Phys. A 123, 394 (2017). https://doi.org/10.1007/s00339-017-1008-0

    Article  CAS  Google Scholar 

  12. R.S. Ingole, S.L. Kadam, S.B. Kulkarni, B.J. Lokhande, Tuning the supercapacitive performance of vanadium oxide electrode material by varying the precursor solution concentration. Thin Solid Films 714, 138383 (2020). https://doi.org/10.1016/j.tsf.2020.138383

    Article  CAS  Google Scholar 

  13. A.V. Thakur, B.J. Lokhande, Source molarity affected surface morphological and electrochemical transitions in binder-free FeO(OH) flexible electrodes and fabrication of symmetric supercapacitive device. Chem. Pap. 72, 1407–1415 (2018). https://doi.org/10.1007/s11696-018-0383-0

    Article  CAS  Google Scholar 

  14. T.S. Ghadge, A.L. Jadhav, Y.M. Uplane et al., Controlled synthesis, structural, morphological and electrochemical study of Cu(OH)2@Cu flexible thin film electrodes prepared via aqueous–non-aqueous routes. J. Mater. Sci. 32, 9018–9031 (2021). https://doi.org/10.1007/s10854-021-05572-8

    Article  CAS  Google Scholar 

  15. J. Chen, U.T. Nakate, Q.T. Nguyen, Y. Wei, S. Park, Surface activated Co3O4/MoO3 nanostructured electrodes by air-plasma treatment toward enhanced supercapacitor. Mater. Sci. Eng. B 285, 115928 (2022). https://doi.org/10.1016/j.mseb.2022.115928

    Article  CAS  Google Scholar 

  16. L. Zhang, D. Shi, T. Liu, M. Jaroniec, J. Yu, Nickel-based materials for supercapacitors. Mater. Today 25, 35–65 (2019). https://doi.org/10.1016/j.mattod.2018.11.002

    Article  CAS  Google Scholar 

  17. R. Ahmed, G. Nabi, Enhanced electrochemical performance of Cr-doped NiO nanorods for supercapacitor application. J. Energy Storage 33, 102115 (2021). https://doi.org/10.1016/j.est.2020.102115

    Article  Google Scholar 

  18. S.D. Dhas, P.S. Maldar, M.D. Patil, M.R. Waikar, R.G. Sonkawade, A.V. Moholkar, Sol-gel synthesized nickel oxide nanostructures on nickel foam and nickel mesh for a targeted energy storage application’. J. Energy Storage 47, 103658 (2022). https://doi.org/10.1016/j.est.2021.103658

    Article  Google Scholar 

  19. B. Vidhyadharan, N.K. Zain, I.I. Misnon, R. Abd Aziz, J. Ismail, M.M. Yusoff, High-performance supercapacitor electrodes from electrospun nickel oxide nanowires. J. Alloys Compd. 610, 143–150 (2014). https://doi.org/10.1016/j.jallcom.2014.04.211

    Article  CAS  Google Scholar 

  20. A. Sasmal, A.K. Nayak, Morphology-dependent solvothermal synthesis of spinel NiCo2O4 nanostructures for enhanced energy storage device application. J. Energy Storage 58, 106342 (2023). https://doi.org/10.1016/j.est.2022.106342

    Article  Google Scholar 

  21. S.G. Randive, B.J. Lokhande, Utilization of spray pyrolyzed porous nickel cobaltite electrode as an advanced material for NiCo2O4@Graphite asymmetric supercapacitor device. Inorg. Chem. Commun. 161, 112099 (2024). https://doi.org/10.1016/j.inoche.2024.112099

    Article  CAS  Google Scholar 

  22. B. Kirubasankar, P. Palanisamy, S. Arunachalam, V. Murugadoss, S. Angaiah, 2D MoSe2-Ni(OH)2 nanohybrid as an efficient electrode material with high rate capability for asymmetric supercapacitor applications. Chem. Eng. J. 355, 881–890 (2019). https://doi.org/10.1016/j.cej.2018.08.185

    Article  CAS  Google Scholar 

  23. B.P. Bastakoti, Y. Kamachi, H. Huang, L. Chen, K.C.-W. Wu, Y. Yamauchi, Hydrothermal synthesis of binary Ni-Co hydroxides and carbonate hydroxides as pseudosupercapacitors. Eur. J. Inorg. Chem. 2013, 39–43 (2013). https://doi.org/10.1002/ejic.201200939

    Article  CAS  Google Scholar 

  24. A. Morenghi, S. Scaravonati, G. Magnani, M. Sidoli, L. Aversa, R. Verucchi, G. Bertoni, M. Riccò, D. Pontiroli, Asymmetric supercapacitors based on nickel decorated graphene and porous graphene electrodes. Electrochim. Acta 424, 140626 (2022). https://doi.org/10.1016/j.electacta.2022.140626

    Article  CAS  Google Scholar 

  25. K. Yousefipour, R. Sarraf-Mamoory, A.C. Maleki, A new strategy for the preparation of multi-walled carbon nanotubes/NiMoO4 nanostructures for high-performance asymmetric supercapacitors. J. Energy Storage 59, 106438 (2023). https://doi.org/10.1016/j.est.2022.106438

    Article  Google Scholar 

  26. J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi, F. Wei, Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater. 22(12), 2632–2641 (2012). https://doi.org/10.1002/adfm.201102839

    Article  CAS  Google Scholar 

  27. S.G. Randive, R.M. Kore, B.J. Lokhande, Sol-gel synthesis and supercapacitive characterization of Bismuth Vanadate. J. Nano Electron. Phys. 12(2), 02027 (2020). https://doi.org/10.21272/jnep.12(2).02027

    Article  CAS  Google Scholar 

  28. M. Ubaidullah, J. Ahmed, T. Ahamad, S.F. Shaikh, S.M. Alshehri, A.M. Al-Enizi, Hydrothermal synthesis of novel nickel oxide@nitrogenous mesoporous carbon nanocomposite using costless smoked cigarette filter for high-performance supercapacitor. Mater. Lett. 266, 127492 (2020). https://doi.org/10.1016/j.matlet.2020.127492

    Article  CAS  Google Scholar 

  29. B. Prasad, A.S. Chougale, S.R. Jadkar, N. Naik, H.M. Pathan, Cadmium sulphide-sensitized zirconium dioxide (ZrO2) photoanode by successive ionic layer adsorption and reaction for solar cell application. J. Mater. Sci. 34, 303 (2023). https://doi.org/10.1007/s10854-022-09681-w

    Article  CAS  Google Scholar 

  30. T. Ogi, D. Hidayat, F. Iskandar, A. Purwanto, K. Okuyama, Direct synthesis of highly crystalline transparent conducting oxide nanoparticles by low pressure spray pyrolysis. Adv. Powder Technol. 20, 203–209 (2009). https://doi.org/10.1016/j.apt.2008.09.002

    Article  CAS  Google Scholar 

  31. U.T. Nakate, P. Patil, R.N. Bulakhe, C.D. Lokhande, S.N. Kale, M. Naushad, R.S. Mane, Sprayed zinc oxide films: Ultra-violet light-induced reversible surface wettability and platinum-sensitization-assisted improved liquefied petroleum gas response. J. Colloid. Interface Sci. 480, 109–117 (2016). https://doi.org/10.1016/j.jcis.2016.07.010

    Article  CAS  PubMed  Google Scholar 

  32. N. Ugemuge, Y.R. Parauha, S.J. Dhoble, Chapter 15—Synthesis and luminescence study of silicate-based phosphors for energy-saving light-emitting diodes. in Energy Mater. Fundame. to App. (2021), pp. 445–480. https://doi.org/10.1016/B978-0-12-823710-6.00017-0

  33. K. Im, S.J. Yoo, K.S. Yoo, J. Kim, Facile spray pyrolysis synthesis of various metal-doped MoO2 microspheres for catalytic partial oxidation of n-dodecane. Catal. Lett. 148, 2510–2515 (2018). https://doi.org/10.1007/s10562-018-2423-3

    Article  CAS  Google Scholar 

  34. K. Alves, C.P. Bergmann, F.A. Berutti, Spray pyrolysis. in Novel Synthesis and Characterization of Nanostructured Materials. Engineering Materials (Springer, Berlin, 2013). https://doi.org/10.1007/978-3-642-41275-2_3

  35. A.K. Tyagi, R.S. Ningthoujam, Hydrothermal method for synthesis of materials. in Handbook on Synthesis Strategies for Advanced Materials, Indian Institute of Metals Series (Springer, Singapore). https://doi.org/10.1007/978-981-16-1807-9_5

  36. S.G. Randive, B.J. Lokhande, Spray pyrolyzed hydrophilic nickel oxide electrodes with nano-granular morphology for a symmetric supercapacitor device. J. Alloy Compd. 944, 169046 (2023). https://doi.org/10.1016/j.jallcom.2023.169046

    Article  CAS  Google Scholar 

  37. A.B. Habtemariam, E. Bekele, Facile synthesis of nickel oxide nanoparticles using Rhamnus prinoides leaf extract and evaluation of its antibacterial activities. Regen. Eng. Transl. Med. 8, 482–488 (2022). https://doi.org/10.1007/s40883-022-00251-4

    Article  CAS  Google Scholar 

  38. A. Owais, M. Khaled, B.S. Yilbas, Hydrophobicity and surface finish. in Comprehensive Materials Finishing (2017), pp. 137–148. https://doi.org/10.1016/B978-0-12-803581-8.09172-4

  39. S.G. Randive, R.G. Bobade, R.C. Ambare et al., Spray pyrolyzed thorn-like nanostructured nickel oxide electrodes for symmetric supercapacitor device. J. Mater. Sci. 35, 577 (2024). https://doi.org/10.1007/s10854-024-12229-9

    Article  CAS  Google Scholar 

  40. R. Wang, Y. Han, Z. Wang, J. Jiang, Y. Tong, X. Lu, Nickel@Nickel oxide core-shell electrode with significantly boosted reactivity for ultrahigh-energy and stable aqueous Ni-Zn battery. Adv. Funct. Mater. 28(29), 1802157 (2018). https://doi.org/10.1002/adfm.201802157

    Article  CAS  Google Scholar 

  41. W.S. Chen, S.H. Yang, W.C. Tseng, W.W. Chen, Y.C. Lu, Utilization of nanoporous nickel oxide as the hole injection layer for quantum dot light-emitting diodes. ACS Omega 6(20), 13447 (2021). https://doi.org/10.1021/acsomega.1c01618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. S.L. Kadam, R.S. Ingole, N.G. Tiwari, U.T. Nakate, Y.T. Nakate, S.B. Kulkarni, R, Role of deposition temperature on physical and electrochemical performance of manganese oxide electrode material for supercapacitor application. Mater. Sci. Eng. B 285, 115934 (2022). https://doi.org/10.1016/j.mseb.2022.115934

    Article  CAS  Google Scholar 

  43. Y.T. Xing, L.Y. Liu, D.F. Franceschini, W.C. Nunes, D.J. Smith, I.G. Solórzano, HRTEM and HRSTEM study of nanostructured materials prepared by pulsed laser deposition. Microsc. Microanal. 22(Suppl 3), 2012–2013 (2016). https://doi.org/10.1017/S1431927616010904

    Article  Google Scholar 

  44. T.T. Le Dang, M. Tonezzer, Polycrystalline NiO nanowires: scalable growth and ethanol sensing. Procedia Eng. 120, 427–434 (2015). https://doi.org/10.1016/j.proeng.2015.08.658

    Article  CAS  Google Scholar 

  45. X. Sun, W. Xie, F. Luo, Nanoarchitectonics of multilayered NiO submicron flakes for ultrafast and stable lithium storage. J. Alloy Compd. 936, 168259 (2023). https://doi.org/10.1016/j.jallcom.2022.168259

    Article  CAS  Google Scholar 

  46. B. Varghese, M. Reddy, Z. Yanwu, C.S. Lit, T.C. Hoong, G. Subba Rao, B. Chowdari, A.T.S. Wee, C.T. Lim, C.-H. Sow, Fabrication of NiO nanowall electrodes for high performance lithium-ion battery. Chem. Mater. 20, 3360–3367 (2008). https://doi.org/10.1021/cm703512k

    Article  CAS  Google Scholar 

  47. W. Guo, W. Sun, Y. Wang, Multilayer CuO@NiO hollow spheres: Microwave-assisted metal-organic-framework derivation and highly reversible structure matched stepwise lithium storage. ACS Nano 9, 11462–11471 (2015). https://doi.org/10.1021/acsnano.5b05610

    Article  CAS  PubMed  Google Scholar 

  48. A.L. Kozlovskiy, A. Alina, M.V. Zdorovets, Study of the effect of ion irradiation on increasing the photocatalytic activity of WO3 microparticles. J. Mater. Sci. 32, 3863–3877 (2021). https://doi.org/10.1007/s10854-020-05130-8

    Article  CAS  Google Scholar 

  49. Y.T. Nakate, U.T. Nakate, R.S. Mane, D.J. Shirale, Natural coconut liquid derived nanosheets structured carbonaceous material for high-performance supercapacitors. Colloids Surf. A 626, 127012 (2021). https://doi.org/10.1016/j.colsurfa.2021.127012

    Article  CAS  Google Scholar 

  50. H. Wang, H. Yi, X. Chen, X. Wang, Facile synthesis of a nano-structured nickel oxide electrode with outstanding pseudocapacitive properties. Electrochim. Acta 105, 353–361 (2013). https://doi.org/10.1016/j.electacta.2013.05.031

    Article  CAS  Google Scholar 

  51. S.D. Dhas, P.S. Maldar, M.D. Patil, A.B. Nagare, M.R. Waikar, R.G. Sonkawade, A.V. Moholkar, Synthesis of NiO nanoparticles for supercapacitor application as an efficient electrode material. Vacuum 181, 109646 (2020). https://doi.org/10.1016/j.vacuum.2020.109646

    Article  CAS  Google Scholar 

  52. M. Yang, C. Zheng, Q. Wang et al., Improvement of specific capacitance and rate performance of NiWO4 synthesized through modified chemical precipitation. J. Mater. Sci. 32, 12232–12240 (2021). https://doi.org/10.1007/s10854-021-05852-3

    Article  CAS  Google Scholar 

  53. S. Wang, J. Zhang, O. Gharbi et al., Electrochemical impedance spectroscopy. Nat. Rev. Methods Primers 1, 41 (2021). https://doi.org/10.1038/s43586-021-00039-w

    Article  CAS  Google Scholar 

  54. T. Rakesh Kumar, C.H. Shilpa Chakra, S. Madhuri et al., Microwave-irradiated novel mesoporous nickel oxide carbon nanocomposite electrodes for supercapacitor application. J. Mater. Sci. 32, 20374–20383 (2021). https://doi.org/10.1007/s10854-021-06547-5

    Article  CAS  Google Scholar 

  55. D.W. Wang, F. Li, H.M. Cheng, Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor. J. Power Sources 185, 1563–1568 (2008). https://doi.org/10.1016/j.jpowsour.2008.08.032

    Article  CAS  Google Scholar 

  56. R. Vinodh, R.S. Babu, R. Atchudan, H.J. Kim, M. Yi, L.M. Samyn, A.L. de Barros, Fabrication of high-performance asymmetric supercapacitor consists of nickel oxide and activated carbon (NiO//AC). Catalysts 12(4), 375 (2022). https://doi.org/10.3390/catal12040375

    Article  CAS  Google Scholar 

  57. S. Nagamuthu, K.S. Ryu, Synthesis of Ag/NiO honeycomb structured nanoarrays as the electrode material for high performance asymmetric supercapacitor devices. Sci. Rep. 9, 4864 (2019). https://doi.org/10.1038/s41598-019-41446-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to record a deep sense of gratitude and profound thanks to CSIR-HRDG India for providing financial support through the CSIR-NET (JRF) scheme. File No. 09/990(0005)/2021-EMR-I

Funding

Shankar G. Randive reports financial support was provided by the Council of Scientific & Industrial Research.

Author information

Authors and Affiliations

Authors

Contributions

Balkrishna J. Lokhande participated in the Generation of concept, formulation and designing the experiment, and data collection; helped in setting up the electrochemical experiments and results in analysis, guided the overall work and wrote part of the manuscript, and overall check-up of the manuscript and correction to give the final shape of the manuscript. Shankar G. Randive contributed specifically performing the experiments, wrote the manuscript with the obtained data/experimental results, and conducted investigation process of the samples using XRD, FESEM, HRTEM, XPS, and Electrochemical characterizations.

Corresponding author

Correspondence to Balkrishna J. Lokhande.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

All procedures performed in studies involving human participants were obtained by the ethical standards of the institutional and or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Research involving animal rights

This article does not contain any studies involving animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Randive, S.G., Lokhande, B.J. Designing and simulating of NiO@Graphite asymmetric supercapacitor device using thermally optimized nickel oxide electrode. J Mater Sci: Mater Electron 35, 864 (2024). https://doi.org/10.1007/s10854-024-12631-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12631-3

Navigation