Skip to main content
Log in

Controlled synthesis, structural, morphological and electrochemical study of Cu(OH)2@Cu flexible thin film electrodes prepared via aqueous–non-aqueous routes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Copper oxide is one of the cheapest transition metal oxides used in the electrode preparation. Present work is focused on the preparation of Cu(OH)2@Cu flexible thin film electrodes (FTFEs) via aqueous and non-aqueous routes by self anodization and their comparative analysis by electrochemical analyzer for capacitive behavior. In this work, electrodes get prepared using different dispersion media at different deposition potentials by anodic electrodeposition technique. Electrodeposition was carried out on flexible Cu plates in 20 ml solution of 1 M NaOH dispersed in different medias viz. water, methanol and ethanol. These FTFEs were analyzed for structural and morphological analysis by using X-ray diffraction which confirms cubic crystal structure for all samples. All deposited electrodes exhibit hydrophilic nature. Cyclic voltammetry (CV) of these electrodes has been carried out in 1 M NaOH electrolyte. Only the electrode deposited at deposition potential 0.9 V via aqueous route exhibits good electrochemical stability and highest specific capacitance 604 F/g in 1 M NaOH at 2 mV/s. Galvanostatic charge–discharge behavior was studied to estimate specific energy (SE), specific power (SP), specific capacitance and columbic efficiency (η). Present work is important to understand the easy synthesis and suitable dispersive media for deposition of hydroxide phase of copper for better electrochemical capacitive behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z.-S. Wu, K. Parvez, X. Feng, Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 4, 2487 (2013)

    Article  Google Scholar 

  2. M. Majumder, R.B. Choudhary, A.K. Thakur, I. Karbhal, Impact of rare-earth metal oxide (Eu2O3) on the electrochemical properties of a polypyrrole/CuO polymeric composite for supercapacitor applications. RSC Adv. 7, 20037 (2017)

    Article  Google Scholar 

  3. M. Majumder, R.B. Choudhary, A.K. Thakur, C.S. Rout, G. Gupta, Rare Earth metal oxide (RE2O3; RE = Nd, Gd, and Yb) incorporated polyindole composites: gravimetric and volumetric capacitive performance for supercapacitor applications. New J. Chem. 42, 5295 (2018)

    Article  CAS  Google Scholar 

  4. B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer-Plenum, New York, 1999).

    Book  Google Scholar 

  5. N. Levy, M.D. Levi, D. Aurbach, R. Demadrille, A. Pron, Failure and stabilization mechanisms in multiply cycled conducting polymers for energy storage devices. J. Phys. Chem. C 114, 16823 (2010)

    Article  CAS  Google Scholar 

  6. J.V. Yakhmi, V. Saxena, D.K. Aswal, Conducting polymer sensors, actuators and field-effect transistors. J. Funct. Mater. (2012). https://doi.org/10.1016/B978-0-12-385142-0.00002-7

    Article  Google Scholar 

  7. A.V. Thakur, B.J. Lokhande, Dip time-dependent SILAR synthesis and electrochemical study of highly flexible PPy-Cu (OH)2 hybrid electrodes for supercapacitors. J. Solid State Electrochem. 21(9), 25772584 (2017)

    Article  Google Scholar 

  8. A.V. Thakur, B.J. Lokhande, Morphological Modification for optimum electrochemical performance of highly pristine polypyrrole flexible electrodes, via SILAR immersion time and fabrication of solid state. Port. Electrochim. Acta 36(6), 377–392 (2018)

    Article  CAS  Google Scholar 

  9. B.J. Lokhande, R.M. Kore, S.D. Sonawane, S.A. Chinni, S.S. Dighe, Synthesis and electrochemical performance of Ni incorporated graphene sheets prepared by electrochemical exfoliation method. Int. J. Res. Anal. Rev. 6(1), 38–40 (2021)

    Google Scholar 

  10. M.F. Iqbal, M.N. Ashiq, A. Razaq, M. Saleem, B. Parveen, M.U. Hassan, Excellent electrochemical performance of graphene oxide based strontium sulfide nanorods for supercapacitor applications. Electrochim. Acta 273, 136–144 (2018)

    Article  CAS  Google Scholar 

  11. C. Wang, J. Zhou, F. Du, Synthesis of highly reduced graphene oxide for supercapacitor. J. Nanomater. 1, 2016 (2016). https://doi.org/10.1155/2016/4840301

    Article  CAS  Google Scholar 

  12. B.J. Lokhande, B.Y. Fugare, Study on structural, morphological, electrochemical and corrosion properties of mesoporous RuO2 thin films prepared by ultrasonic spray pyrolysis for supercapacitor electrode. Mater. Sci. Semicond. Process. 71(C), 121–127 (2017)

    Google Scholar 

  13. B.Y. Fugare, A.V. Thakur, R.M. Kore, B.J. Lokhande, Spray pyrolysed Ru:TiO2 thin film electrodes prepared for electrochemical supercapacitor. AIP Conf. Proc. 1942(1), 140010 (2018)

    Article  Google Scholar 

  14. D. Majumdara, T. Maiyalagan, Z. Jiang, A Review on recent progress in ruthenium oxide-based composites for supercapacitor applications. ChemElectroChem (2019). https://doi.org/10.1002/celc.201900668

    Article  Google Scholar 

  15. J.P. Zheng, P.J. Cygan, T.R. Jow, Hydrous ruthenium oxide as an electrode material for electrochemical supercapacitors. J. Electrochem. Soc. 142, 2699 (1995)

    Article  CAS  Google Scholar 

  16. R.C. Ambare, S.R. Bharadwaj, B.J. Lokhande, Non-aqueous route spray pyrolyzed Ru: Co3O4 thin electrodes for supercapacitor application. Appl. Surf. Sci. 349, 887–896 (2015)

    Article  CAS  Google Scholar 

  17. R.S. Ingole, B.J. Lokhande, Nanoporous vanadium oxide network prepared by spray pyrolysis. Mater. Lett. 168, 95–98 (2016)

    Article  CAS  Google Scholar 

  18. S.V. Khavale, B.J. Lokhande, Electrochemical performance of potentio-dynamically deposited Co3O4 electrodes: influence of annealing temperature. J. Mater. Sci. Mater. Electron. 28(7), 5106 (2017)

    Article  CAS  Google Scholar 

  19. A.V. Thakur, B.J. Lokhande, Source molarity affected surface morphological and electrochemical transitions in binder-free FeO(OH) flexible electrodes and fabrication of symmetric supercapacitive device. Chem. Pap. 72(6), 1407 (2018)

    Article  CAS  Google Scholar 

  20. A.V. Thakur, B.J. Lokhande, Electrolytic anion affected charge storage mechanisms of Fe3O4 flexible thin film electrode in KCl and KOH: a comparative study by cyclic voltammetry and galvanostatic charge discharge. J. Mater. Sci. Mater. Electron. 28(16), 11755 (2017)

    Article  CAS  Google Scholar 

  21. R.M. Kore, B.J. Lokhande, A robust solvent deficient route synthesis of meso-porous Fe2O3 nanoparticles as supercapacitor electrode material with improved capacitive performance. J. Alloys Compd. 725, 129–138 (2017)

    Article  CAS  Google Scholar 

  22. R.M. Kore, B.J. Lokhande, R.S. Mane, Mu. Naushad, M.R. Khan, Nano morphology-dependent pseudocapacitive properties of NiO electrodes engineered through controlled potentiodynamic electrodeposition process. RSC Adv. 6(29), 24478 (2016)

    Article  CAS  Google Scholar 

  23. A.A. Yadav, Y.M. Hunge, S.B. Kulkarni, Synthesis of multifunctional FeCo2O4 electrode using ultrasonic treatment for photocatalysis and energy storage applications. Ultrason. Sonochem. 58, 104663 (2019)

    Article  CAS  Google Scholar 

  24. A.A. Yadav, A.C. Lokhande, J.H. Kim, C.D. Lokhande, Supercapacitive properties of nanoporous oxide layer formed on 304 type stainless steel. J. Colloid Interface Sci. 473, 22–27 (2016)

    Article  CAS  Google Scholar 

  25. A.A. Yadav, Y.M. Hunge, S.B. Kulkarni, Chemical synthesis of Co3O4 nanowires for symmetric supercapacitor device. J. Mater. Sci. Mater. Electron. 29(19), 16401–16409 (2018)

    Article  CAS  Google Scholar 

  26. A.A. Yadav, Y.M. Hunge, S. Liu, S.B. Kulkarni, Ultrasound assisted growth of NiCo2O4@ carbon cloth for high energy storage device application. Ultrason. Sonochem. 56, 290–296 (2019)

    Article  CAS  Google Scholar 

  27. A.A. Yadav, Y.M. Hunge, S.B. Kulkarni, C. Terashima, S.W. Kang, Three-dimensional nano flower–like hierarchical array of multifunctional copper cobaltate electrode as efficient electrocatalyst for oxygen evolution reaction and energy storage. J. Colloid Interface Sci. 576, 476–485 (2020)

    Article  CAS  Google Scholar 

  28. A.A. Yadav, Y.M. Hunge, S.W. Kang, Spongy ball-like copper oxide nanostructure modified by reduced graphene oxide for enhanced photocatalytic hydrogen production. Mater. Res. Bull. 133, 111026 (2021)

    Article  CAS  Google Scholar 

  29. B.R. Sankapal, S.L. Patil, S.S. Raut, Cu(OH)2@Cd(OH)2 core-shell nanostructure: synthesis to supercapacitor application. Thin Solid Films 692, 137584 (2019)

    Article  Google Scholar 

  30. K.S. Parveen, S.S. Raut, M.K. Tiwari, B.R. Sankapal, S.N. Pandey, Flexible iron-doped Sr(OH) 2 fibre wrapped tuberose for high-performance supercapacitor electrode. J. Alloys Compd. 781, 831–841 (2019)

    Article  Google Scholar 

  31. S. Patil, S. Raut, R. Gore, B. Sankapal, One-dimensional cadmium hydroxide nano wires towards electrochemical supercapacitor. New J. Chem. 39(12), 9124–9131 (2015)

    Article  CAS  Google Scholar 

  32. R.N. Bulakhe, V.Q. Nguyen, D. Tuma, Y.R. Lee, H. Zhang, S. Zhang, J.-J. Shim, Chemically grown 3D copper hydroxide electrodes with different morphologies for high-performance asymmetric supercapacitors. J. Ind. Eng. Chem. 66, 288–297 (2018). https://doi.org/10.1016/j.jiec.2018.05.043

    Article  CAS  Google Scholar 

  33. B. Vidyadharan, I.I. Misnon, J. Ismail, M.M. Yusoff, R. Jose, High performance asymmetric supercapacitors using electrospun copper oxide nanowires anode. J. Alloys Compd. 633, 22 (2015)

    Article  CAS  Google Scholar 

  34. M. Hashmi, S. Ullah, I.S. Kim, Copper oxide (CuO) loaded polyacrylonitrile (PAN) nano fiber membranes for antimicrobial breath mask applications. Curr. Res. Biotechnol. 1, 1 (2019). https://doi.org/10.1016/j.crbiot.2019.07.001

    Article  Google Scholar 

  35. R.D. Prabu, S. Valanarasu, V. Ganesh, S.M. Shkir, S. Al Faify, A. Kathalingam, Investigation of molar concentration effect on structural, optical, electrical, and photovoltaic properties of spray-coated Cu2O thin films. Surf. Interface Anal. (2018). https://doi.org/10.1002/sia.6374

    Article  Google Scholar 

  36. D.P. Dubal, D.S. Dhawale, R.R. Salunkhe, V.S. Jamdade, C.D. Lokhande, Fabrication of copper oxide multilayer nanosheets for supercapacitor application. J. Alloys Compd. 492, 26 (2010)

    Article  CAS  Google Scholar 

  37. H. Wang, H.S. Casalongue, Y. Liang, H. Dai, Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 132(21), 7472 (2010)

    Article  CAS  Google Scholar 

  38. K.V. Gurav, U.M. Patil, S.W. Shin, G.L. Agawane, M.P. Suryawanshi, S.M. Pawar, P.S. Patil, C.D. Lokhande, J.H. Kim, Room temperature chemicalsynthesis of Cu(OH)2 thin films for supercapacitor application. J. Alloys Compd. 573, 27 (2013)

    Article  CAS  Google Scholar 

  39. S.V. Khavale, B.J. Lokhande, Electrochemical performance amelioration at higher scan rates of electrodeposited cobalt oxide electrode by Ru incorporation. J. Mater. Sci. Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-9323-6(2018)

    Article  Google Scholar 

  40. J. Yu, J. Ran, Facile preparation and enhanced photocatalytic H2-production activity of Cu(OH)2 cluster modified TiO2. Energy Environ. Sci. 4, 1364 (2011)

    Article  CAS  Google Scholar 

  41. N. Saadaldin, M.N. Alsloum, N. Hussain, Preparing of copper oxides thin films by chemical bath deposition (CBD) for using in environmental application. Energy Procedia 74, 1459 (2015)

    Article  CAS  Google Scholar 

  42. S.K. Shinde, D.P. Dubal, G.S. Ghodake, D.Y. Kim, V.J. Fulari, Nanoflower-like CuO/Cu(OH)2 hybrid thin films: synthesis and electrochemical supercapacitive properties. J. Electroanal. Chem. 732, 80 (2014)

    Article  CAS  Google Scholar 

  43. A.V. Thakur, B.J. Lokhande, Effect of dip time on the electrochemical behavior of PPy-Cu (OH)2 hybrid electrodes synthesized using pyrrole and CuSO4. e-Polymers 17(2), 167 (2017)

    Article  CAS  Google Scholar 

  44. P. Sivasakthi, R. Sekar, G.N.K. Ramesh Bapu, Electrodeposition and characterisation of copperdeposited from cyanide-free alkaline glycerol complex bath. Trans. IMF 93(1), 32 (2015)

    Article  CAS  Google Scholar 

  45. J. Wang, L. Zhu, L. Ji, Z. Chen, Preparation of nanostructured Cu(OH)2 and CuO electro catalysts for water oxidation by electrophoresis deposition. J. Mater. Res. 33(05), 581 (2017)

    Article  CAS  Google Scholar 

  46. T.S. Ghadge, A.L. Jadhav, B.J. Lokhande, Synthesis and electrochemical study of ruthenium influenced copper oxide electrodes prepared by self anodization. J. Alloys Compd. 824, 153860 (2020)

    Article  CAS  Google Scholar 

  47. D. Osorio-Rivera, G. Torres-Delgado, J. Marquez-marin, M.A. Aaguilar Frutis, O. Zelaya-Angel, Cuprous oxide thin films obtained by spray-pyrolysis technique. J. Mater. Sci. Mater. Electron. 29(1), 851–857 (2018)

    Article  CAS  Google Scholar 

  48. S. Bijani, R. Schrebler, E.A. Dalchiele, M. Gab, L. Martínez, J.R. Ramos-Barrado, Study of the nucleation and growth mechanisms in the electrodeposition of micro- and nanostructured Cu2O thin films. J. Phys. Chem. C 115(43), 21373 (2011)

    Article  CAS  Google Scholar 

  49. F.C. Walsh, M.E. Herron, Electrocrystallization and electrochemical control of crystal growth: fundamental considerations and electrodeposition of metals. J. Phys. D Appl. Phys. 24(2), 217 (1991)

    Article  CAS  Google Scholar 

  50. V.D. Patake, S.S. Joshi, C.D. Lokhande, O.S. Joo, Electrodeposited porous and amorphous copper oxide film for application in supercapacitor. J. Mater. Chem. Phys. 114, 6 (2009)

    Article  CAS  Google Scholar 

  51. I. Zhitomirsky, L.G. Or, J. Eur. Chem. Soc. 16, 819 (1996)

    CAS  Google Scholar 

  52. D.-D. La, S.-Y. Park, Y.-W. Choi, Y.-S. Kim, Wire-like bundle arrays of copper hydroxide prepared by the electrochemical anodization of Cu foil. Korean Chem. Soc. 31(8), 2283 (2010)

    Article  CAS  Google Scholar 

  53. R.D. Sun, A. Nakajima, A. Fujushima, T. Watanabe, K. Hashimoto, J. Phys. Chem. B 105, 1984 (2001)

    Article  CAS  Google Scholar 

  54. S.V. Kambale, A.L. Jadhav, R.M. Kore, A.V. Thakur, B.J. Lokhande, Cyclic voltammetric study of CuO thin film electrodes prepared by automatic spray pyrolysis. Macromol. Symp. 387(1), 1800213 (2019)

    Article  CAS  Google Scholar 

  55. J. Kanga, J. Wena, S.H. Jayaramb, A. Yuc, X. Wang, Electrochim. Acta 115, 587 (2014)

    Article  Google Scholar 

  56. B. Pandit, D.P. Dubal, P. Gómez-Romero, B.B. Kale, B.R. Sankapal, Sci. Rep. 7, 43430 (2017). https://doi.org/10.1038/srep43430

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Lokhande.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadge, T.S., Jadhav, A.L., Uplane, Y.M. et al. Controlled synthesis, structural, morphological and electrochemical study of Cu(OH)2@Cu flexible thin film electrodes prepared via aqueous–non-aqueous routes. J Mater Sci: Mater Electron 32, 9018–9031 (2021). https://doi.org/10.1007/s10854-021-05572-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05572-8

Navigation