Skip to main content

Advertisement

Log in

The influence of concentration on the morphology of TiO2 thin films prepared by spray pyrolysis for electrochemical study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the nanoscale architecture, expected morphology plays an important role in the fabrication of supercapacitive devices due to their highly porous properties. Herein, a well-defined rutile TiO2 architecture was successfully prepared by spray pyrolysis technique (SPT), by changing the concentration of the spraying solution from 0.01 to 0.1 M at 723 K deposition temperature onto stainless steel substrates. The thermal decomposition behavior of the precursor is analyzed using thermogravimetric analyzer. As-deposited thin film electrodes exhibits rutile tetragonal crystalline structure confirmed using XRD. FT-IR study indicate the presence of Ti=O stretching vibration in the range 400–1000 cm−1. The obtained nanostructures merely changes by changing the concentration of spraying solution and process parameters as strongly evidenced using SEM. TEM image and SAED pattern confirms the formation of nanorods and rutile tetragonal structure of TiO2. EDAX confirms formation of pristine TiO2. Wettability of samples shows angle of contact changes by changing the sample thickness and surface roughness of the samples. Optimized electrode shows maximum specific capacitance 273.84 F/g at 2 mV/s in 1 M KOH. Maximum values of specific energy (SE), specific power (SP) and efficiency as observed using galvanostatic charge–discharge are 04.32 Wh/Kg, 70.27 KW/Kg and 90.37%, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797 (2012)

    Article  Google Scholar 

  2. C. Largoet, C. Portet, J. Chmiola, P. Taberna, Y. Gogotsi, P. Simon, Relation between the Ion size and pore size for an electric double-layer capacitor. Am. Chem. Soc. 130, 2730 (2008)

    Article  Google Scholar 

  3. R. Kotz, M. Carlen, Principles and applications of electrochemical capacitors. Electrochem. Acta 45, 2483 (2000)

    Article  Google Scholar 

  4. A. Burke, Ultracapacitors: why, how, and where is the technology. J. Power Sources 91, 37 (2000)

    Article  ADS  Google Scholar 

  5. B.E. Conway, Electrochemical supercapacitors (Kluwer Academic/Plenum, New York, 1999)

    Book  Google Scholar 

  6. H.P. Deshmukh, P.S. Shinde, P.S. Patil, Structural, optical and electrical characterization of spray-deposited TiO2 thin films. Mater. Sci. Engg. B 130, 220 (2006)

    Article  Google Scholar 

  7. H. Zhan, Y. Zhong, Z. He, L. Zhang, J. Wang, J. Zang, C. Cao, Three-dimensional nanoporous TiO2 network films with excellent electrochemical capacitance performance. Alloys Compd. 597, 1 (2014)

    Article  Google Scholar 

  8. D. Zhang, G. Li, X. Yang, J.C. Yu, A micrometer-size TiO2 single-crystal photocatalyst with remarkable 80% level of reactive facets. Chem. Commun. 29, 4381 (2009)

    Article  Google Scholar 

  9. J. Fu, Photocatalytic properties of glass ceramics containing anatase-type TiO2. Mater. Lett. 68, 419 (2012)

    Article  Google Scholar 

  10. Z. Liu, M. Misra, Dye-sensitized photovoltaic wires using highly ordered TiO2 nanotube arrays. ACS Nano 4, 2196 (2010)

    Article  Google Scholar 

  11. B.Y. Fugare, B.J. Lokhande, Spray pyrolysed titanium oxide thin films using different ingredients for supercapacitive charaterizations. J. Mater. Sci. Mater. Electron. 27, 5788 (2016)

    Article  Google Scholar 

  12. G. Du, B. Wan, Z. Guo, J. Shen, Y. Li, H. Liu, Effect of annealing on electrochemical performance of anodized TiO2 nanotubes for lithium ion batteries. Adv. Sci. Lett. 4, 469 (2011)

    Article  Google Scholar 

  13. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One- dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353 (2003)

    Article  Google Scholar 

  14. Y. Leprince-Wang, K. Yu-Zhang, Study of the growth morphology of TiO2 thin films by AFM and TEM. Surf. Coat. Technol. 140, 155 (2001)

    Article  Google Scholar 

  15. R.C. Weast (Ed), Hand book of chemistry and physics, 67th edn. CRC, Boca Rotan, p. B-140, (1986–1987)

  16. N-G Park, Van de Lagemaat, Frank AJ, Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells, J. Phys. Chem. B, 104, 8989, (2000)

  17. R. Mechiakh, N. Ben Sedrine, R. Chitourou, R. Bensaha, Correlation between microstructure and optical properties of nano-crystalline TiO2 thin films prepared by sol–gel dip coating. Appl. Surf. Sci. 257, 670 (2010)

    Article  ADS  Google Scholar 

  18. G.H. Kim, S.D. Kim, S.H. Park, Plasma enhanced chemical vapor deposition of TiO2 films on silica gel powders at atmospheric pressure in a circulating fluidized bed reactor. Chem. Eng. Process: Proc. Intens. 48, 1135 (2009)

    Article  Google Scholar 

  19. M.W. Pyun, E.J. Kim, D.H. Yoo, S.H. Hann, Oblique angle deposition of TiO2 thin films prepared by electron-beam evaporation. Appl. Surf. Sci. 257, 1149 (2010)

    Article  ADS  Google Scholar 

  20. C. Sima, C. Grigoriu, Electrical properties of ultrathin titanium dioxide films on silicon. Thin Solid Films, 518, 1314, (2009)

  21. T. Paulmier, J.M. Bell, P.M. Fredericks, Plasma electrolytic deposition of titanium dioxide nanorods and nano-particles. Mater. Process. Technol. 208, 117 (2008)

    Article  Google Scholar 

  22. I. OjaAcik, A. Junolainen, V. Mikli, M. Danielson, M. Krunks, Growth of ultra-thin TiO2 films by spray pyrolysis on different substrates. Appl. Surf. Sci. 256, 1391 (2009)

    Article  ADS  Google Scholar 

  23. D. Mardare, F. Iacomi, N. Cornel, M. Girtan, D. Luca, Undoped and Cr-doped TiO2 thin films obtained by spray pyrolysis. Thin Solid Films 518, 4586 (2010)

    Article  ADS  Google Scholar 

  24. D. Perednis, L. Gauckler, Thin film deposition using spray pyrolysis. Electroceram. 14, 103 (2005)

    Article  Google Scholar 

  25. R.W. Schwartz, T. Schneller, R. Waser, C R Chim., Chemical solution deposition of electronic oxide films, 7, 433 (2004)

  26. R.S. Mane, Y.H. Hwang, C.D. Lokhande, S.D. Sartale, S.H. Han, Room temperature synthesis of compact TiO2 thin films for 3-D solar cells by chemical arrested route. Appl. Surf. Sci. 246, 271 (2005)

    Article  ADS  Google Scholar 

  27. L. Castaneda, J.C. Alonso, A. Ortiz, E. Andrade, J.M. Saniger, J.G. Banuelos, Spray pyrolysis deposition and characterization of titanium oxide thin films. Mater. Chem. Phys. 77, 938 (2002)

    Article  Google Scholar 

  28. W. Wu-Qiang, H.S. Rao, H.L. Feng, X.D. Guo, S. Cheng-Yong, Morphology-controlled cactus-like branched anatase TiO2 arrays with high light-harvesting efficiency for dye-sensitized solar cells. Power Sourc. 260, 6 (2014)

    Article  Google Scholar 

  29. A. Moses Ezhil Raj, V. Agnes, V. BenaJothy, C. Sanjeeviraja, Low temperature TiO2 rutile phase thin film synthesis by chemical spray pyrolysis (CSP) of titanyl acetylacetonate. Mater. Sci. Semicond. Process. 13, 391 (2010)

    Article  Google Scholar 

  30. E. Bae, N. Murakami, T. Ohno, Exposed crystal surface-controlled TiO2 nanorods having rutile phase from TiCl3 under hydrothermal conditions. J. Mol. Catal. A: Chem. 300, 72 (2009)

    Article  Google Scholar 

  31. M.M. Viana, V.F. Soares, N.D.S. Mohallem, Synthesis and characterization of TiO2 nanoparticles. Ceram. Int. 36, 2047 (2010)

    Article  Google Scholar 

  32. B.D. Cullity, Elements of X-ray diffraction, 2nd edn. (Addison-Wesely publishing company, Reading, 1978)

    MATH  Google Scholar 

  33. M.M. Ba-Abbad, A.M.H. Kadhum, A.B. Mohammad, M.S. Takriff, K. Sopian, Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation. Int. J. Electrochem. Sci. 7, 4878 (2012)

    Google Scholar 

  34. Y. Wang, L. Zhang, K. Deng, X. Chen, Z. Zou, Low temperature synthesis and photocatalytic activity of rutile TiO2 nanorod superstructures. J Phys Chem C 111, 2709 (2007)

    Article  Google Scholar 

  35. J.W. Lang, L.B. Kong, W.J. Wu, Y.C. Lau, L. Kong, Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors, Chem. Comm. 5, 4213 (2008)

  36. D. Quere., Wetting and roughness, Annu. Rev. Mater. Res., 38, 71, (2008)

  37. P.D. Cozzoli, A. Kornowski, H. Weller, Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods. Am. Chem. Soc. 125, 14539 (2003)

    Article  Google Scholar 

  38. M. Salari, K. Konstantinov, H.K. Liu, Enhancement of the capacitance in TiO2 nanotubes through controlled introduction of oxygen vacancies. Mater. Chem. 21, 5128 (2011)

    Article  Google Scholar 

  39. B.J. Lokhande, R.C. Ambare, R.S. Mane, S.R. Bharadwaj, Boron-doped cadmium oxide composite structures and their electrochemical measurements. Mater. Res. Bull. 48, 2978 (2013)

    Article  Google Scholar 

  40. K.K. Liu, Z.L. Hu, R. Xue, J.R. Zhang, Z.J. Zhu, Power Sourc. 176, 862 (2008)

    Google Scholar 

  41. Y. Xie, D. Fu, Supercapacitance of ruthenium oxide deposited on titania and titanium substrates. Mater. Chem. Phys. 122, 27 (2010)

    Article  Google Scholar 

  42. J.S. Ye, H.F. Cui, X. Liu, T.M. Lim, W.D. Zhang, F.S. Sheu, Preparation and characterization of aligned carbon nanotube–ruthenium oxide nanocomposites for supercapacitors. Small 1, 560 (2005)

    Article  Google Scholar 

  43. T. Berger, T. Lana-Villarreal, D. Monllor-Satoca, R. G´omez, An electrochemical study on the nature of trap states in nanocrystalline rutile thin films. J. Phys. Chem. C 111(27), 9936 (2007)

    Article  Google Scholar 

Download references

Acknowledgement

Authors are grateful to DST-SERB for providing financial support through the Project Scheme SB/EMEQ-331/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Lokhande.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fugare, B.Y., Lokhande, B.J. The influence of concentration on the morphology of TiO2 thin films prepared by spray pyrolysis for electrochemical study. Appl. Phys. A 123, 394 (2017). https://doi.org/10.1007/s00339-017-1008-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1008-0

Keywords

Navigation