Skip to main content
Log in

Investigation of ion transport in plasticized polymer electrolytes using electrical equivalent circuit (EEC) modeling

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, biopolymer-based solid polymer blend electrolyte (SPBE) films were created from chitosan (CS), poly(2-ethyl-2-oxazoline) (POZ), potassium iodide (KI), and glycerol (GL) using solvent casting. The effect of GL as a plasticizer on the electrical properties of materials was investigated using electrochemical impedance spectroscopy. GL significantly increased dopant salt dissociation, increasing mobile charge density and decreasing bulk resistance (\({{\text{R}}}_{{\text{b}}}\)). This increased ionic conductivity and ion transport in the polymer electrolyte (PE) system, with the samples containing the most GL exhibiting the highest conductivity (3.96 × 10–4 S/cm). Electrochemical impedance plots revealed distinct conductivity characteristics at electrode interfaces due to double-layer capacitances. Electrical Equivalent Circuit (EEC) analysis was utilized to interpret impedance measurements, revealing improved ion transport after EEC fitting. The theoretical and practical significance of transport parameters derived from the impedance plots was demonstrated. The dielectric properties of PE films were analyzed to gain insight into electrolyte ion conduction and polarization. GL increased dielectric constant (\({\varepsilon }{\prime}\)) and dielectric loss (\({\varepsilon }^{{\prime}{\prime}}\)) values at low frequencies, thereby enhancing dielectric properties and conductivity through an increase in the number of mobile ions. However, excessive GL diminished dielectric properties due to ion aggregation. Increased loss tangent (\({\text{tan}}\delta\)) peaks in PE films revealed the impact of GL on charge carrier mobility and resistivity. PE films exhibited negligible real electrical modulus (\({M}{\prime}\)) at low frequencies in the absence of electrode polarization (EP), while imaginary part of the electrical modulus (\({M}^{{\prime}{\prime}}\)) demonstrated a loss peak indicating substantial relaxation. GL incorporation altered relaxation dynamics, which may have implications for particular applications. The study also cast light on the dynamics of material relaxation, which may be pertinent to various applications particularly in flexible electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All the necessary Data are available within the main text.

References

  1. J.L. Ndeugueu, M. Aniya, Structural characterization of the ac conductivity in Ag ion conducting glasses. J. Mater. Sci. 44, 2483–2488 (2009). https://doi.org/10.1007/s10853-009-3318-x

    Article  CAS  Google Scholar 

  2. W. Li, M. Yuan, M. Yang, Dual-phase polymer electrolyte with enhanced phase compatibility based on Poly(MMA-g-PVC)/PMMA. Eur. Polym. J. 42, 1396–1402 (2006). https://doi.org/10.1016/J.EURPOLYMJ.2005.12.015

    Article  CAS  Google Scholar 

  3. A. Bhide, K. Hariharan, Ionic transport studies on (PEO)6:NaPO3 polymer electrolyte plasticized with PEG400. Eur. Polym. J. 43, 4253–4270 (2007). https://doi.org/10.1016/J.EURPOLYMJ.2007.07.038

    Article  CAS  Google Scholar 

  4. J.H. Kim, J. Won, Y.S. Kang, Olefin-induced dissolution of silver salts physically dispersed in inert polymers and their application to olefin/paraffin separation. J. Membr. Sci. 241, 403–407 (2004). https://doi.org/10.1016/j.memsci.2004.05.027

    Article  CAS  Google Scholar 

  5. C.M. Nyuk, M.I.N. Mohd Isa, Solid biopolymer electrolytes based on carboxymethyl cellulose for use in coin cell proton batteries. J Sustain Sci Manag 2017.

  6. M.Y. Chong, Development of biodegradable solid polymer electrolytes incorporating different nanoparticles for electric double layer capacitor. University of Malaya, 2017.

  7. N.S. Salleh, S.B. Aziz, Z. Aspanut, M.F.Z. Kadir, Electrical impedance and conduction mechanism analysis of biopolymer electrolytes based on methyl cellulose doped with ammonium iodide. Ionics (Kiel) 22, 2157–2167 (2016). https://doi.org/10.1007/s11581-016-1731-0

    Article  CAS  Google Scholar 

  8. M.F.F. Shukur, R. Ithnin, M.F.Z.F.Z. Kadir, Electrical characterization of corn starch-LiOAc electrolytes and application in electrochemical double layer capacitor. Electrochim. Acta 136, 2014–6 (2014). https://doi.org/10.1016/j.electacta.2014.05.075

    Article  CAS  Google Scholar 

  9. L. Sampathkumar, P. Christopher Selvin, S. Selvasekarapandian, P. Perumal, R. Chitra, M. Muthukrishnan, Synthesis and characterization of biopolymer electrolyte based on tamarind seed polysaccharide, lithium perchlorate and ethylene carbonate for electrochemical applications. Ionics (Kiel) 25, 1067–1082 (2019). https://doi.org/10.1007/s11581-019-02857-1

    Article  CAS  Google Scholar 

  10. V. Moniha, M. Alagar, S. Selvasekarapandian, B. Sundaresan, R. Hemalatha, G. Boopathi, Synthesis and characterization of bio-polymer electrolyte based on iota-carrageenan with ammonium thiocyanate and its applications. J. Solid State Electrochem. 22, 3209–3223 (2018). https://doi.org/10.1007/s10008-018-4028-6

    Article  CAS  Google Scholar 

  11. B.-W. Du, S.-Y. Hu, R. Singh, T.-T. Tsai, C.-C. Lin, F.-H. Ko, Eco-friendly and biodegradable biopolymer chitosan/Y2O3 composite materials in flexible organic thin-film transistors. Mater (Basel, Switzerland) 10, 1026 (2017). https://doi.org/10.3390/ma10091026

    Article  CAS  Google Scholar 

  12. R. Hirase, Y. Higashiyama, M. Mori, Y. Takahara, C. Yamane, Hydrated salts as both solvent and plasticizer for chitosan. Carbohydr. Polym. 80, 993–996 (2010). https://doi.org/10.1016/j.carbpol.2010.01.001

    Article  CAS  Google Scholar 

  13. T.S. Trung, W.W. Thein-Han, N.T. Qui, C.H. Ng, W.F. Stevens, Functional characteristics of shrimp chitosan and its membranes as affected by the degree of deacetylation. Bioresour. Technol. 97, 659–663 (2006). https://doi.org/10.1016/j.biortech.2005.03.023

    Article  CAS  PubMed  Google Scholar 

  14. P. Bai, F. Cao, X. Lan, F. Zhao, Y. Ma, C. Zhao, Chitosan gel beads immobilized Cu (II) for selective adsorption of amino acids. J. Biochem. Biophys. Methods 70, 903–908 (2008). https://doi.org/10.1016/j.jprot.2008.01.001

    Article  CAS  PubMed  Google Scholar 

  15. G. Lu, L. Kong, B. Sheng, G. Wang, Y. Gong, X. Zhang, Degradation of covalently cross-linked carboxymethyl chitosan and its potential application for peripheral nerve regeneration. Eur. Polym. J. 43, 3807–3818 (2007). https://doi.org/10.1016/j.eurpolymj.2007.06.016

    Article  CAS  Google Scholar 

  16. Y. He, B. Zhu, Y. Inoue, Hydrogen bonds in polymer blends. Prog. Polym. Sci. 29, 1021–1051 (2004). https://doi.org/10.1016/j.progpolymsci.2004.07.002

    Article  CAS  Google Scholar 

  17. H.B. Tahir, R.M. Abdullah, S.B. Aziz, The H+ ion transport study in polymer blends incorporated with ammonium nitrate: XRD, FTIR, and electrical characteristics. Results Phys 42, 105960 (2022). https://doi.org/10.1016/j.rinp.2022.105960

    Article  Google Scholar 

  18. D. Knorr, Use of chitinous polymers in food. Food Technol. 38, 85–97 (1984)

    CAS  Google Scholar 

  19. J.H. Kim, S.M. Park, J. Won, Y.S. Kang, Dependence of facilitated olefin transport on the thickness of silver polymer electrolyte membranes. J. Membr. Sci. 236, 209–212 (2004). https://doi.org/10.1016/j.memsci.2004.02.019

    Article  CAS  Google Scholar 

  20. S.U. Hong, J.Y. Kim, Y.S. Kang, Effect of water on the facilitated transport of olefins through solid polymer electrolyte membranes. J. Membr. Sci. 181, 289–293 (2001). https://doi.org/10.1016/S0376-7388(00)00628-1

    Article  CAS  Google Scholar 

  21. S.W. Kang, J.H. Kim, K. Char, J. Won, Y.S. Kang, Nanocomposite silver polymer electrolytes as facilitated olefin transport membranes. J. Membr. Sci. 285, 102–107 (2006). https://doi.org/10.1016/j.memsci.2006.08.005

    Article  CAS  Google Scholar 

  22. R.W. Moreadith, T.X. Viegas, M.D. Bentley, J.M. Harris, Z. Fang, K. Yoon et al., Clinical development of a poly(2-oxazoline) (POZ) polymer therapeutic for the treatment of Parkinson’s disease—proof of concept of POZ as a versatile polymer platform for drug development in multiple therapeutic indications. Eur. Polym. J. 88, 524–552 (2017). https://doi.org/10.1016/j.eurpolymj.2016.09.052

    Article  CAS  Google Scholar 

  23. L. Ruiz-Rubio, M.L. Alonso, L. Pérez-Álvarez, R.M. Alonso, J.L. Vilas, V.V. Khutoryanskiy, Formulation of Carbopol®/Poly (2-ethyl-2-oxazoline) s mucoadhesive tablets for buccal delivery of hydrocortisone. Polymers (Basel) 10, 175 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hu Y, Yoshida K, Vajeeston P, Kim S, Sørby MH, Orimo S, et al. Lithium ionic conduction in composites of Li (BH4) 0.75 I0. 25 and amorphous 0.75 Li2S· 0.25 P2S5 for battery applications. Electrochim Acta 2018;278:332–9.

  25. S.B. Aziz, M.H. Hamsan, R.M. Abdullah, M.F.Z. Kadir, A promising polymer blend electrolytes based on chitosan: Methyl cellulose for EDLC application with high specific capacitance and energy density. Molecules 24, 2503 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. S.B. Aziz, M.H. Hamsan, W.O. Karim, M.F.Z. Kadir, M.A. Brza, O.G. Abdullah, High proton conducting polymer blend electrolytes based on chitosan: dextran with constant specific capacitance and energy density. Biomolecules 9, 267 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. S.B. Aziz, M.H. Hamsan, M.F.Z. Kadir, W.O. Karim, R.M. Abdullah, Development of polymer blend electrolyte membranes based on chitosan: dextran with high ion transport properties for EDLC application. Int. J. Mol. Sci. 20, 3369 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. P. Tamilselvi, M. Hema, Conductivity studies of LiCF3SO3 doped PVA: PVdF blend polymer electrolyte. Physica B 437, 53–57 (2014)

    Article  CAS  Google Scholar 

  29. Y.M. Yusof, M.F. Shukur, H.A. Illias, M.F.Z. Kadir, Conductivity and electrical properties of corn starch–chitosan blend biopolymer electrolyte incorporated with ammonium iodide. Phys. Scr. 89, 35701 (2014)

    Article  CAS  Google Scholar 

  30. Meaurio E, Hernandez-Montero N, Zuza E, Sarasua J-R. Miscible Blends Based on Biodegradable Polymers. Charact. Polym. Blends, John Wiley & Sons, Ltd; 2014, p. 7–92. doi:https://doi.org/10.1002/9783527645602.ch02.

  31. Adam AA, Soleimani H, Dennis JO, Aldaghri OA, Alsadig A, Ibnaouf KH, et al. Insight into the Effect of Glycerol on Dielectric Relaxation and Transport Properties of Potassium-Ion-Conducting Solid Biopolymer Electrolytes for Application in Solid-State Electrochemical Double-Layer Capacitor. Molecules 2023;28. doi:https://doi.org/10.3390/molecules28083461.

  32. Asnawi ASFM, B. Aziz S, M. Nofal M, Hamsan MH, Brza MA, Yusof YM, et al. Glycerolized Li+ ion conducting chitosan-based polymer electrolyte for energy storage EDLC device applications with relatively high energy density. Polymers (Basel) 2020;12:1433.

  33. Aziz SB, Asnawi ASFM, Kadir MF, Alshehri SM, Ahamad T, Yusof YM, et al. Structural, Electrical and Electrochemical Properties of Glycerolized Biopolymers Based on Chitosan (CS): Methylcellulose (MC) for Energy Storage Application. Polymers (Basel) 2021;13. doi:https://doi.org/10.3390/polym13081183.

  34. S.L. Agrawal, M. Singh, M. Tripathi, M.M. Dwivedi, K. Pandey, Dielectric relaxation studies on [PEO–SiO2]:NH4SCN nanocomposite polymer electrolyte films. J. Mater. Sci. 44, 6060–6068 (2009). https://doi.org/10.1007/s10853-009-3833-9

    Article  CAS  Google Scholar 

  35. S.B. Aziz, Z.H.Z. Abidin, Ion-transport study in nanocomposite solid polymer electrolytes based on chitosan: electrical and dielectric analysis. J. Appl. Polym. Sci. 132, 41774 (2015). https://doi.org/10.1002/app.41774

    Article  CAS  Google Scholar 

  36. S.B. Aziz, B.S. Aziz, Role of dielectric constant on ion transport: reformulated Arrhenius equation. Adv. Mater. Sci. Eng. (2016). https://doi.org/10.1155/2016/2527013

    Article  Google Scholar 

  37. S.B. Aziz, Z.H.Z. Abidin, Electrical and morphological analysis of chitosan:AgTf solid electrolyte. Mater. Chem. Phys. 144, 280–286 (2014). https://doi.org/10.1016/j.matchemphys.2013.12.029

    Article  CAS  Google Scholar 

  38. S.B. Aziz, R.M. Abdullah, M.A. Rasheed, H.M. Ahmed, Role of ion dissociation on DC conductivity and silver nanoparticle formation in PVA:AgNt based polymer electrolytes: deep insights to ion transport mechanism. Polymers (Basel) 9, 338 (2017). https://doi.org/10.3390/polym9080338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Y. Zhang, X. Xu, Modeling oxygen ionic conductivities of ABO3 perovskites through machine learning. Chem. Phys. 558, 111511 (2022). https://doi.org/10.1016/j.chemphys.2022.111511

    Article  CAS  Google Scholar 

  40. Y. Zhang, X. Xu, Machine learning glass transition temperature of polyacrylamides using quantum chemical descriptors. Polym. Chem. 12, 843–851 (2021). https://doi.org/10.1039/D0PY01581D

    Article  Google Scholar 

  41. Y. Zhang, X. Xu, Machine Learning Properties of Electrolyte Additives: A Focus on Redox Potentials. Ind. Eng. Chem. Res. 60, 343–354 (2021). https://doi.org/10.1021/acs.iecr.0c05055

    Article  CAS  Google Scholar 

  42. D.K. Pradhan, R.N.P. Choudhary, B.K. Samantaray, Studies of dielectric relaxation and AC conductivity behavior of plasticized polymer nanocomposite electrolytes. Int. J. Electrochem. Sci. 3, 597–608 (2008). https://doi.org/10.1016/j.matchemphys.2009.01.008

    Article  CAS  Google Scholar 

  43. C.V. Subba Reddy, A.-P. Jin, Q.-Y. Zhu, L.-Q. Mai, W. Chen, Preparation and characterization of (PVP+ NaClO 4) electrolytes for battery applications. Eur. Phys. J. E 19, 471–476 (2006)

    Article  PubMed  Google Scholar 

  44. Y.C. Lee, M.H. Buraidah, H.J. Woo, L.P. Teo, Electrical and optical properties of poly(acrylamide-co-acrylic acid) based polymer electrolytes containing water-soluble potassium iodide salt. Mol. Cryst. Liq. Cryst. (2023). https://doi.org/10.1080/15421406.2023.2166135

    Article  Google Scholar 

  45. Sangwan B, Kumar S, Singh A, Pandey SP, Singh PK, Singh RC, et al. Modified Poly (Vinyl Alcohol) Based Polymer Electrolyte for Dye Sensitized Solar Cells (DSSCs). Macromol. Symp., vol. 407, Wiley Online Library; 2023, p. 2100462.

  46. S.B. Aziz, T.J. Woo, M.F.Z. Kadir, H.M. Ahmed, A conceptual review on polymer electrolytes and ion transport models. J Sci Adv Mater Devices 3, 1–17 (2018). https://doi.org/10.1016/J.JSAMD.2018.01.002

    Article  Google Scholar 

  47. Aziz SB, Woo TJ, Kadir MFZ, Ahmed HM, B Aziz S, S Marf A, et al. Impedance, Electrical Equivalent Circuit (EEC) Modeling, Structural (FTIR and XRD), Dielectric, and Electric Modulus Study of MC-Based Ion-Conducting Solid Polymer Electrolytes. Materials (Basel) 2022;15:1–17. doi:https://doi.org/10.3390/ma15010170.

  48. S. B. Aziz, A. Marf, E.M.A. Dannoun, M.A. Brza, R.M. Abdullah, The study of the degree of crystallinity, electrical equivalent circuit, and dielectric properties of polyvinyl alcohol (PVA)-based biopolymer electrolytes. Polymers (Basel) 12, 2184 (2020)

    Article  PubMed  Google Scholar 

  49. J. M. Hadi, S. B. Aziz, M. M. Nofal, S.A. Hussein, M.H. Hafiz, M.A. Brza et al., Electrical, dielectric property and electrochemical performances of plasticized silver ion-conducting chitosan-based polymer nanocomposites. Membranes (Basel) (2020). https://doi.org/10.3390/membranes10070151

    Article  PubMed  PubMed Central  Google Scholar 

  50. M.A. Brza, S.B. Aziz, H. Anuar, S.M. Alshehri, F. Ali, T. Ahamad et al., Characteristics of a plasticized PVA-based polymer electrolyte membrane and H+ conductor for an electrical double-layer capacitor: structural, morphological, and ion transport properties. Membranes (Basel) (2021). https://doi.org/10.3390/membranes11040296

    Article  PubMed  PubMed Central  Google Scholar 

  51. S. Rajendran, R. Babu, P. Sivakumar, Investigations on PVC/PAN composite polymer electrolytes. J. Membr. Sci. 315, 67–73 (2008). https://doi.org/10.1016/j.memsci.2008.02.007

    Article  CAS  Google Scholar 

  52. B. Chatterjee, N. Kulshrestha, P.N. Gupta, Electrical properties of starch-PVA biodegradable polymer blend. Phys. Scr. 90, 25805 (2015). https://doi.org/10.1088/0031-8949/90/2/025805

    Article  CAS  Google Scholar 

  53. H.T. Ahmed, V.J. Jalal, D.A. Tahir, A.H. Mohamad, O.G. Abdullah, Effect of PEG as a plasticizer on the electrical and optical properties of polymer blend electrolyte MC-CH-LiBF4 based films. Results Phys 15, 102735 (2019). https://doi.org/10.1016/j.rinp.2019.102735

    Article  Google Scholar 

  54. M.H. Hamsan, M.M. Nofal, S.B. Aziz, M.A. Brza, E.M.A. Dannoun, A.R. Murad et al., Plasticized polymer blend electrolyte based on chitosan for energy storage application: structural, circuit modeling, morphological and electrochemical properties. Polymers (Basel) (2021). https://doi.org/10.3390/polym13081233

    Article  PubMed  PubMed Central  Google Scholar 

  55. D.K. Das-Gupta, Molecular processes in polymer electrets. J. Electrostat. 51–52, 159–166 (2001). https://doi.org/10.1016/S0304-3886(01)00090-0

    Article  Google Scholar 

  56. S.B. Aziz, M.H. Hamsan, M.A. Brza, M.F.Z. Kadir, S.K. Muzakir, R.T. Abdulwahid, Effect of glycerol on EDLC characteristics of chitosan:methylcellulose polymer blend electrolytes. J. Mater. Res. Technol. 9, 8355–8366 (2020). https://doi.org/10.1016/j.jmrt.2020.05.114

    Article  CAS  Google Scholar 

  57. M.M.E. Jacob, S.R.S. Prabaharan, S. Radhakrishna, Effect of PEO addition on the electrolytic and thermal properties of PVDF-LiClO4 polymer electrolytes. Solid State Ionics 104, 267–276 (1997). https://doi.org/10.1016/S0167-2738(97)00422-0

    Article  CAS  Google Scholar 

  58. C.P. Fonseca, F. Cavalcante, F.A. Amaral, C.A.Z. Souza, S. Neves, Thermal and conduction properties of a PCL-biodegradable gel polymer electrolyte with LiClO4, LiF3CSO3, and LiBF4 salts. Int. J. Electrochem. Sci. 2, 52 (2007)

    Article  CAS  Google Scholar 

  59. S.B. Aziz, R.M. Abdullah, M.F.Z. Kadir, H.M. Ahmed, Non suitability of silver ion conducting polymer electrolytes based on chitosan mediated by barium titanate (BaTiO3) for electrochemical device applications. Electrochim. Acta 296, 494–507 (2019). https://doi.org/10.1016/j.electacta.2018.11.081

    Article  CAS  Google Scholar 

  60. S.B. Aziz, R.M. Abdullah, Crystalline and amorphous phase identification from the tanδ relaxation peaks and impedance plots in polymer blend electrolytes based on [CS:AgNt]x:PEO(x–1) (10 ≤ x ≤ 50). Electrochim. Acta 285, 30–46 (2018). https://doi.org/10.1016/j.electacta.2018.07.233

    Article  CAS  Google Scholar 

  61. M.A. Brza, S.B. Aziz, H. Anuar, F. Ali, R.T. Abdulwahid, J.M. Hadi, Electrochemical impedance spectroscopy as a novel approach to investigate the influence of metal complexes on electrical properties of poly (vinyl alcohol)(PVA) composites. Int. J. Electrochem. Sci. 16, 210542 (2021)

    Article  CAS  Google Scholar 

  62. E.M.A. Dannoun, S.B. Aziz, M.A. Brza, M. Nofal, A.S.M. Asnawi, Y.M. Yusof et al., The study of plasticized solid polymer blend electrolytes based on natural polymers and their application for energy storage EDLC devices. Polymers (Basel) 12, 2531 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hadi JM, Aziz SB, R. Saeed S, Brza MA, Abdulwahid RT, Hamsan MH, et al. Investigation of ion transport parameters and electrochemical performance of plasticized biocompatible chitosan-based proton conducting polymer composite electrolytes. Membranes (Basel) 2020;10:363.

  64. E.M.A. Dannoun, S.B. Aziz, R.T. Abdulwahid, S.I. Al-Saeedi, M.M. Nofal, N.M. Sadiq et al., Study of MC: DN-based biopolymer blend electrolytes with inserted Zn-metal complex for energy storage devices with improved electrochemical performance. Membranes (Basel) 12, 769 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. L.P. Teo, M.H. Buraidah, A.F. Nor, S.R. Majid, Conductivity and dielectric studies of Li2SnO3. Ionics (Kiel) 18, 655–65 (2012). https://doi.org/10.1007/s11581-012-0667-2

    Article  CAS  Google Scholar 

  66. A.K. Arof, S. Amirudin, S.Z. Yusof, I.M. Noor, A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys. Chem. Chem. Phys. 16, 1856–1867 (2014). https://doi.org/10.1039/c3cp53830c

    Article  CAS  PubMed  Google Scholar 

  67. S.B. Aziz, Occurrence of electrical percolation threshold and observation of phase transition in chitosan(1–x):AgIx (0.05 ≤ x ≤ 0.2)-based ion-conducting solid polymer composites. Appl. Phys. A 122, 706 (2016). https://doi.org/10.1007/s00339-016-0235-0

    Article  CAS  Google Scholar 

  68. M. Marzantowicz, J.R. Dygas, F. Krok, Impedance of interface between PEO: LiTFSI polymer electrolyte and blocking electrodes. Electrochim. Acta 53, 7417–7425 (2008)

    Article  CAS  Google Scholar 

  69. J. Yang, Hopping conduction and low-frequency dielectric relaxation in 5 mol % Mn doped ( Pb, Sr ) TiO3 films Hopping conduction and low-frequency dielectric relaxation in 5mol % Mn doped ( Pb, Sr ) TiO3 films. J. Appl. Phys. (2008). https://doi.org/10.1063/1.3021447

    Article  Google Scholar 

  70. M.D. Migahed, M. Ishra, T. Fahmy, A. Barakat, Electric modulus and AC conductivity studies in conducting PPy composite films at low temperature. J. Phys. Chem. Solids 65, 1121–1125 (2004). https://doi.org/10.1016/j.jpcs.2003.11.039

    Article  CAS  Google Scholar 

  71. S. Bhadra, N.K. Singha, D. Khastgir, Dielectric properties and EMI shielding efficiency of polyaniline and ethylene 1-octene based semi-conducting composites. Curr. Appl. Phys. 9, 396–403 (2009). https://doi.org/10.1016/j.cap.2008.03.009

    Article  Google Scholar 

  72. R. Mishra, N. Baskaran, P.A. Ramakrishnan, K.J. Rao, Lithium ion conduction in extreme polymer in salt regime 112, 261–273 (1998)

    CAS  Google Scholar 

  73. N. Kamarulzaman, Z. Osman, M.R. Muhamad, Z.A. Ibrahim, A.K. Arof, N.S. Mohamed, Performance characteristics of LiMn2O4/polymer/carbon electrochemical cells. J. Power. Sources 97–98, 722–725 (2001). https://doi.org/10.1016/S0378-7753(01)00647-4

    Article  Google Scholar 

  74. L.V.S. Lopes, D.C. Dragunski, A. Pawlicka, J.P. Donoso, Nuclear magnetic resonance and conductivity study of starch based polymer electrolytes. Electrochim. Acta 48, 2021–2027 (2003). https://doi.org/10.1016/S0013-4686(03)00181-6

    Article  CAS  Google Scholar 

  75. Y.N. Sudhakar, M. Selvakumar, D.K. Bhat, LiClO4-doped plasticized chitosan and poly(ethylene glycol) blend as biodegradable polymer electrolyte for supercapacitors. Ionics (Kiel) 19, 277–285 (2013). https://doi.org/10.1007/s11581-012-0745-5

    Article  CAS  Google Scholar 

  76. M.F.F. Shukur, R. Ithnin, M.F.Z.F.Z.Z. Kadir, S.B.B.S.B. Aziz, R.M. Abdullah, Z.H.Z. Abidin et al., LiClO4-doped plasticized chitosan and poly(ethylene glycol) blend as biodegradable polymer electrolyte for supercapacitors. Mater. Chem. Phys. 13, 2021–2027 (2014). https://doi.org/10.1016/S0013-4686(03)00181-6

    Article  CAS  Google Scholar 

  77. N.K. Zainuddin, N.M.J. Rasali, A.S. Samsudin, Study on the effect of PEG in ionic transport for CMC-NH4Br-based solid polymer electrolyte. Ionics (Kiel) 24, 3039–3052 (2018). https://doi.org/10.1007/s11581-018-2505-7

    Article  CAS  Google Scholar 

  78. H.J. Woo, S.R. Majid, A.K. Arof, Dielectric properties and morphology of polymer electrolyte based on poly(ɛ-caprolactone) and ammonium thiocyanate. Mater. Chem. Phys. 134, 755–761 (2012). https://doi.org/10.1016/j.matchemphys.2012.03.064

    Article  CAS  Google Scholar 

  79. S.B. Aziz, Li+ ion conduction mechanism in poly (ε-caprolactone)-based polymer electrolyte. Iran Polym J 22, 877–83 (2013). https://doi.org/10.1007/s13726-013-0186-7

    Article  CAS  Google Scholar 

  80. A. Abdullah, S.Z. Abdullah, A.M.M. Ali, T. Winie, M.Z.A. Yahya, R.H.Y. Subban, Electrical properties of PEO–LiCF3SO3–SiO2 nanocomposite polymer electrolytes. Mater. Res. Innov. 13, 255–258 (2009). https://doi.org/10.1179/143307509X440451

    Article  CAS  Google Scholar 

  81. S. Selvasekarapandian, Devi R. Chithra, Dielectric studies on a solid electrolyte AgI-PbBr2-Ag2OB2O3. Mater. Chem. Phys. (1999). https://doi.org/10.1016/S0254-0584(98)00256-9

    Article  Google Scholar 

  82. R.T. Abdulwahid, S.B. Aziz, M.F.Z. Kadir, Environmentally friendly plasticized electrolyte based on chitosan (CS): potato starch (PS) polymers for EDLC application: Steps toward the greener energy storage devices derived from biopolymers. J Energy Storage 67, 107636 (2023). https://doi.org/10.1016/j.est.2023.107636

    Article  Google Scholar 

  83. S.B. Aziz, M.H. Hamsan, M.F.Z. Kadir, H.J. Woo, Design of polymer blends based on Chitosan:POZ with improved dielectric constant for application in polymer electrolytes and flexible electronics. Adv. Polym. Technol. 2020, 8586136 (2020). https://doi.org/10.1155/2020/8586136

    Article  CAS  Google Scholar 

  84. M.A. Brza, S.B. Aziz, H. Anuar, F. Ali, Structural, ion transport parameter and electrochemical properties of plasticized polymer composite electrolyte based on PVA: a novel approach to fabricate high performance EDLC devices. Polym. Test. 91, 106813 (2020). https://doi.org/10.1016/j.polymertesting.2020.106813

    Article  CAS  Google Scholar 

  85. R.T. Abdulwahid, S.B. Aziz, M.F.Z. Kadir, Insights into ion transport in biodegradable solid polymer blend electrolyte based on FTIR analysis and circuit design. J. Phys. Chem. Solids 167, 110774 (2022). https://doi.org/10.1016/j.jpcs.2022.110774

    Article  CAS  Google Scholar 

  86. T. Eschen, J. Kösters, M. Schönhoff, N.A. Stolwijk, Ionic transport in polymer electrolytes based on PEO and the PMImI ionic liquid: effects of salt concentration and iodine addition. J. Phys. Chem. B 116, 8290–8298 (2012). https://doi.org/10.1021/jp303579b

    Article  CAS  PubMed  Google Scholar 

  87. Maurya KK, Hashimi SA. Evidence of Ion Association in Polymer Electrolyte by Direct Mobility Measurements in Solid State Ionics: Materials and Applications, ed. by BVR Chowdari, S. Chandra, S. Singh and PC Srivastava 1992.

  88. T. Winie, S. Ramesh, A.K. Arof, Studies on the structure and transport properties of hexanoyl chitosan-based polymer electrolytes. Physica B 404, 4308–4311 (2009)

    Article  CAS  Google Scholar 

  89. R. Singh, P.K. Singh, V. Singh, B. Bhattacharya, Quantitative analysis of ion transport mechanism in biopolymer electrolyte. Opt. Laser Technol. 113, 303–309 (2019)

    Article  CAS  Google Scholar 

  90. A. Chandra, R.C. Agrawal, Y.K. Mahipal, Ion transport property studies on PEO-PVP blended solid polymer electrolyte membranes. J. Phys. D 42, 135107 (2009). https://doi.org/10.1088/0022-3727/42/13/135107

    Article  CAS  Google Scholar 

  91. S.B. Aziz, The mixed contribution of ionic and electronic carriers to conductivity in chitosan based solid electrolytes mediated by CuNt salt. J. Inorg. Organomet. Polym. Mater. 28, 1942–1952 (2018). https://doi.org/10.1007/s10904-018-0862-3

    Article  CAS  Google Scholar 

  92. C.S. Ramya, S. Selvasekarapandian, G. Hirankumar, T. Savitha, P.C. Angelo, Investigation on dielectric relaxations of PVP-NH4SCN polymer electrolyte. J. Non Cryst. Solids 354, 1494–1502 (2008). https://doi.org/10.1016/j.jnoncrysol.2007.08.038

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the financial support for University of Sulaimani.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjdar M. Abdullah.

Ethics declarations

Competing interests

The author declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, R.M. Investigation of ion transport in plasticized polymer electrolytes using electrical equivalent circuit (EEC) modeling. J Mater Sci: Mater Electron 35, 777 (2024). https://doi.org/10.1007/s10854-024-12564-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12564-x

Navigation