Skip to main content
Log in

Structural characterization of the ac conductivity in Ag ion conducting glasses

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The material trends in various silver ion conducting glasses have been studied recently by focusing on the relationship between the first sharp diffraction peak (FSDP) wave number Q, and the fitting parameters of the ac conductivity, precisely the ratio (log A)/n, where A and n represent the pre-exponential factor and the power law exponent of Jonscher’s law, respectively. In the present paper, a model for the FSDP wave number dependence of the ratio (log A)/n has been proposed and a good agreement has been found with the experiments. By using the concept of bond fluctuation in superionic conductors, the results have been successfully explained, leading to the conclusion that the universal aspect of the power law reflects the universal pattern of the potential barrier at intermediate length scales. The result reconfirms that the ion transport in glasses is intimately related with the FSDP wave number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sidebottom DL (2000) Phys Rev B 61:14507

    Article  CAS  Google Scholar 

  2. Ingram MD (1987) Phys Chem Glasses 28:215

    CAS  Google Scholar 

  3. Papathanassiou AN (2006) J Non-Cryst Solids 352:5444

    Article  CAS  Google Scholar 

  4. Jonscher AK (1977) Nature 267:673

    Article  CAS  Google Scholar 

  5. Dyre JC, Schrøder TB (2000) Rev Mod Phys 72:873

    Article  Google Scholar 

  6. Elliott SR (1994) Solid State Ionics 70/71:27

    Article  Google Scholar 

  7. Mott NF, Davies EA (1979) Electronic processes in non-crystalline materials. Oxford University Press, Oxford

    Google Scholar 

  8. Long AR (1982) Adv Phys 31:553

    Article  CAS  Google Scholar 

  9. Elliott SR (1987) Adv Phys 36:135

    Article  CAS  Google Scholar 

  10. Aniya M (2008) J Non-Cryst Solids 354:365

    Article  CAS  Google Scholar 

  11. Papathanassiou AN (2005) Mater Lett 59:1634

    Article  CAS  Google Scholar 

  12. Cramer C, Brunklaus S, Ratai E, Gao Y (2003) Phys Rev Lett 91:266601

    Article  CAS  Google Scholar 

  13. Cutroni M, Mandanici A, Mustarelli P, Tomasi C (2002) Solid State Ionics 154–155:713

    Article  Google Scholar 

  14. Bhattacharya S, Ghosh A (2005) J Phys Condens Matter 17:5655

    Article  CAS  Google Scholar 

  15. Bhattacharya S, Ghosh A (2006) J Appl Phys 100:114119

    Article  Google Scholar 

  16. Bhattacharya S, Dutta D, Ghosh A (2006) Phys Rev B 73:104201

    Article  Google Scholar 

  17. Dutta D, Ghosh A (2007) J Chem Phys 127:044708

    Article  CAS  Google Scholar 

  18. Ndeugueu JL, Aniya M (2008) In: Chowdari BVR et al (eds) Solid state ionics. Macmillan, India, p 401

  19. Taylor HE (1959) J Soc Glass Technol 43:124T

    CAS  Google Scholar 

  20. Funke K (1993) Prog Solid State Chem 22:111

    Article  CAS  Google Scholar 

  21. Rao KJ, Estournès C, Mènètrier M, Levasseur A (1994) Philos Mag B 70:809

    Article  CAS  Google Scholar 

  22. Vainas B, Almond DP, Luo J, Stevens R (1999) Solid State Ionics 126:65

    Article  CAS  Google Scholar 

  23. Nowick AS, Lim BS, Vaysleyb AV (1994) J Non-Cryst Solids 172–174:1243

    Article  Google Scholar 

  24. Sidebottom DL (1999) Phys Rev Lett 83:983

    Article  CAS  Google Scholar 

  25. Price DL (1996) Curr Opin Solid State Mater Sci 1:572

    Article  CAS  Google Scholar 

  26. Suzuya K, Price DL, Saboungi ML, Ohno H (1997) Nucl Instrum Methods Phys Res B 133:57

    Article  CAS  Google Scholar 

  27. Aniya M, Kawamura J (2002) Solid State Ionics 154–155:343

    Article  Google Scholar 

  28. Aniya M (1992) J Phys Soc Jpn 61:4474

    Article  CAS  Google Scholar 

  29. Aniya M (2000) Solid State Ionics 136–137:1085

    Article  Google Scholar 

  30. Rousselot C, Malugani JP, Mercier R, Tachez M, Chieux P, Pappin AJ, Ingram MD (1995) Solid State Ionics 78:211

    Article  CAS  Google Scholar 

  31. Chiodelli G, Campari G, Flor G, Magistris A, Villa M (1983) Solid State Ionics 8:311

    Article  CAS  Google Scholar 

  32. Minami T, Tanaka M (1980) J Solid State Chem 32:51

    Article  CAS  Google Scholar 

  33. Dejus RJ, Susman S, Volin KJ, Montague DG, Price DL (1992) J Non-Cryst Solids 143:162

    Article  CAS  Google Scholar 

  34. Kawamura J, Hiyama S (1992) Solid State Ionics 53–56:1227

    Article  Google Scholar 

  35. Börjesson L, Hassan AK, Swenson J, Torell LM, Fontana A (1993) Phys Rev Lett 70:1275

    Article  Google Scholar 

  36. Swenson J, McGreevy RL, Börjesson L, Wicks JD, Howells WS (1996) J Phys Condens Matter 8:3545

    Article  CAS  Google Scholar 

  37. Kawamura J (1997) In: Iwahara H (ed) Dynamics of fast ions in solids and its evolution for solid state ionics, Report of a Priority Area Research Program supported by The Ministry of Education, Science, Sport and Culture of Japan, p 11

  38. Bhattacharya S, Ghosh A (2005) J Chem Phys 123:124514

    Article  CAS  Google Scholar 

  39. Takahashi H, Rikitake N, Sakuma T, Ishii Y (2004) Solid State Ionics 168:93

    Article  CAS  Google Scholar 

  40. Dutta D, Ghosh A (2005) Phys Rev B 72:024201

    Article  Google Scholar 

  41. Iwadate Y, Suzuki M, Hattori T, Fukushima K, Nishiyama S, Misawa M, Fukunaga T, Itoh K (2005) J Alloys Compd 389:229

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Japan Society for the Promotion of Science for the Grant-in-Aid for Scientific Research (No.19560014), and the Ministry of Education, Culture, Sports, Science, and Technology of Japan for the Grant-in-Aid for Scientific Research on Priority Area, “Nanoionics (439)” and for the MONBUKAGAKUSHO-Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Ndeugueu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ndeugueu, J.L., Aniya, M. Structural characterization of the ac conductivity in Ag ion conducting glasses. J Mater Sci 44, 2483–2488 (2009). https://doi.org/10.1007/s10853-009-3318-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3318-x

Keywords

Navigation