Skip to main content
Log in

Dielectric properties and ion transport studies from Trukhan, EIS, and Bandara-Mellander approaches for plasticized sodium ion conducting polymer blend electrolytes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In the current article, transport parameters of ions (number density (n), mobility (μ), viscosity (η), and diffusion coefficient (D)) are determined using three methods (Bandara-Mellander (B.-M.), Trukhan, and EIS) for plasticized PVA:chitosan (Ch):sodium fluoride (NaF) electrolyte. The B.-M. results are in better agreement with the Trukhan results than the EIS approach. At the 55 wt.% of glycerol (glc), the film has the highest conductivity of 3.42 × 10−5 Scm−1 which shows the fast migration of ions. The universal Jonscher’s power law is well fitted to the AC conductivity spectra. The dielectric property is studied using the modulus curves and loss tangent tan (ϕ) spectra. The tan (ϕ) is fitted in the whole frequency (fr) window to measure the relaxation time (τ) and transport parameters of ions. The effect of glc on the transport of ions is well investigated. The n, µ, and D are enhanced with loading glc, while η is decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Kim S, Seo D, Ma X et al (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721

    Article  CAS  Google Scholar 

  2. Guo S, Yu H, Liu P, Ren Y, Zhang T et al (2014) High-performance symmetric sodium-ion batteries using a new bipolar material O3-type Na0.8Ni0.4Ti0.6O2. Energy Environ Sci 2014(00):1-31

  3. Palomares V, Casas-Cabanas M, Castillo-Martinez E et al (2013) Update on Na based battery materials. A growing research path. Energy Environ Sci 6:2312–2337

    Article  CAS  Google Scholar 

  4. Kundu D, Talaie E, Duffort V, Nazar LF (2015) The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int 54:3431–3448

    Article  CAS  Google Scholar 

  5. Goodenough JB, Singh P (2015) Review—solid electrolytes in rechargeable electrochemical cells. J Electrochem Soc 162:A2387–A2392

    Article  CAS  Google Scholar 

  6. Lin X, Salari M, Arava LMR et al (2016) High temperature electrical energy storage: advances, challenges, and frontiers. Chem Soc Rev 45:5848–5887

    Article  CAS  PubMed  Google Scholar 

  7. Aldalur I, Zhang H, Piszcz M et al (2017) Jeffamine® based polymers as highly conductive polymer electrolytes and cathode binder materials for battery application. J Power Sources 347:37–46

    Article  CAS  Google Scholar 

  8. Gittleson FS, El Gabaly F (2017) Non-faradaic Li+ migration and chemical coordination across solid-state battery interfaces. Nano Lett 17:6974–6982

    Article  CAS  PubMed  Google Scholar 

  9. Liu W, Lin D, Sun J et al (2016) Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano 10:11407–11413

    Article  CAS  PubMed  Google Scholar 

  10. Elham M.A. Dannoun, Shujahadeen B. Aziz, Mohamad A. Brza, Muaffaq M. Nofal, Ahmad S.F.M. Asnawi, Yuhanees M. Yusof, Shakhawan Al-Zangana, Muhamad H. Hamsan, Mohd F. Z. Kadir and Haw J. Woo, 2020 The study of plasticized solid polymer blend electrolytes based on natural polymers and their application for energy storage EDLC devices Polymers 12 2531

  11. Aziz B, S., S. Marf, A., Dannoun, E. M. A., Brza, M. A., & Abdullah, R. M. (2020) The study of the degree of crystallinity, electrical equivalent circuit, and dielectric properties of polyvinyl alcohol (PVA)-based biopolymer electrolytes. Polymers 12(10):2184

    Article  CAS  Google Scholar 

  12. Aziz SB, Brevik I, Hamsan MH, Brza MA, Nofal M, M., Abdullah, A. M., …Kadir, M. F. Z. (2020) Compatible solid polymer electrolyte based on methyl cellulose for energy storage application: structural, electrical, and electrochemical properties. Polymers 12(10):2257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Arya A, Sharma AL (2018) Structural, microstructural and electrochemical properties of dispersed type polymer nanocomposite films. J Phys D Appl Phys 51:045504

    Article  Google Scholar 

  14. Ayse A, Bozkurt A (2012) Nanocomposite polymer electrolyte membranes based on poly (vinyl phosphonic acid)/sulfated nano-titania. J Power Sources 21:158–163

    Google Scholar 

  15. Mohamad A. Brza, Shujahadeen B. Aziz, HazleenAnuar, Saad M. Alshehri, Fathilah Ali, TansirAhamad and Jihad M. Hadi, 2021 Characteristics of a plasticized PVA-based polymer electrolyte membrane and H+ conductor for an electrical double-layer capacitor structural morphological and ion transport properties Membranes 11 296

  16. Shujahadeen B. Aziz, Muaffaq M. Nofal, M. F. Z. Kadir, Elham M. A. Dannoun, Mohamad A. Brza, Jihad M. Hadi and Ranjdar M. Abdullah, 2021 Bio-based plasticized PVA based polymer blend electrolytes for energy storage EDLC devices ion transport parameters and electrochemical properties Materials 14 1994

  17. Buraidah MH, Arof AK (2011) Characterization of chitosan/PVA blended electrolyte doped with NH4I. J Non-Cryst Solids 357:3261–3266

    Article  CAS  Google Scholar 

  18. Jia YT, Gong J, Gu XH, Kim HY, Dong J, Shen XY (2007) Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method. Carbohydr Polym 67:403–409

    Article  CAS  Google Scholar 

  19. Mansur HS, Costa HS (2008) Nanostructured poly(vinyl alcohol)bioactive glass and poly(vinyl alcohol)/chitosan/bioactive glass hybrid scaffold for biomedical application. J Chem Eng 137:72–83

    Article  CAS  Google Scholar 

  20. Kadir MFZ, Majid SR, Arof AK (2010) Plasticized chitosan–PVA blend polymer electrolyte based proton battery. Electrochim Acta 55:1475–1482

    Article  CAS  Google Scholar 

  21. Shukla PK, Agrawal SL (2000) Effect of PVAc dispersal into PVANH4SCN polymer electrolyte. Ionics 6(3–4):312–320

    Article  CAS  Google Scholar 

  22. Manthiram A, Yu X, Wang S (2017) Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater 2:16103

    Article  CAS  Google Scholar 

  23. Paranjape N, Mandadapu PC, Wu G, Lin H (2017) Highly-branched cross-linked poly(ethylene oxide) with enhanced ionic conductivity. Polymer 111:1–8

    Article  CAS  Google Scholar 

  24. Tao C, Gao MH, Yin BH, Li B, Huang YP, Xu G, Bao JJ (2017) A promising TPU/PEO blend polymer electrolyte for all-solid-state lithium ion batteries. Electrochim Acta 257:31–39

    Article  CAS  Google Scholar 

  25. Kesavan K, Mathew CM, Rajendran S (2014) Lithium ion conduction and ion-polymer interaction in poly (vinyl pyrrolidone) based electrolytes blended with different plasticizers. Chin Chem Lett 25:1428–1434

    Article  CAS  Google Scholar 

  26. Quintana DA, Baca E, Mosquera E, Vargas RA, Diosa JE (2019) Improving the ionic conductivity in nanostructured membranes based on poly(vinyl alcohol) (PVA), chitosan (CS), phosphoric acid (H3PO4), and niobium oxide (Nb2O5). Ionics 25:1131–1136

    Article  CAS  Google Scholar 

  27. Hamsan, H. M., Aziz, S. B., Kadir, M. F. Z., Brza, M. A., & Karim, W. O. 2020 The study of EDLC device fabricated from plasticized magnesium ion conducting chitosan based polymer electrolyte Polymer Testing 106714

  28. Costa-Jr ES, Pareira MM, Mansur HS (2009) Properties and biocompatibility of chitosan films modified by blending with PVA and chemically crosslinked. J Mater Sci Mater Med 20:553–561

    Article  Google Scholar 

  29. Mucha M (1998) Rheological properties of chitosan blends with poly(ethylene-oxide) and poly(vinyl alcohol) in solution. React Funct Polym 38:19–25

    Article  CAS  Google Scholar 

  30. Irfan M, Manjunath A, Mahesh SS, Somashekar R, Demappa T (2021) Influence of NaF salt doping on electrical and optical properties of PVA/PVP polymer blend electrolyte films for battery application. J Mater Sci: Mater Electron 32(5):5520–5537. https://doi.org/10.1007/s10854-021-05274-1

    Article  CAS  Google Scholar 

  31. Bompilwar SD, Kondawar SB, Tabhane VA, Kargirwar SR (2010) Thermal stability of CdS/ZnS nanoparticles embedded conducting polyaniline nanocomposites. Adv Appl Sci Res 1:166–173

    CAS  Google Scholar 

  32. Xu J, Cui X, Zhang J, Liang H, Wang H, Li J (2008) Preparation of CuS nanoparticles embedded in poly(vinyl alcohol) nanofibre via electrospinning. Bull Mater Sci 31:189–192

    Article  CAS  Google Scholar 

  33. Mustafa S, M., O. Ghareeb, H., B. Aziz, S., Brza, M. A., Al-Zangana, S., M. Hadi, J., & Kadir, M. F. Z. (2020) Electrochemical characteristics of glycerolized PEO-based polymer electrolytes. Membranes 10(6):116

    Article  CAS  PubMed Central  Google Scholar 

  34. Maheshwaran C, Kanchan DK, Mishra K, Kumar D, Gohel K (2020) Flexible magnesium-ion conducting polymer electrolyte membranes: mechanical, structural, thermal, and electrochemical impedance spectroscopic properties. J Mater Sci: Mater Electron. https://doi.org/10.1007/s10854-020-04065-4

    Article  Google Scholar 

  35. Maheshwaran C, Kanchan DK, Mishra K, Kumar D, Gohel K (2020) Effect of active MgO nano-particles dispersion in small amount within magnesium-ion conducting polymer electrolyte matrix. Nano-Structures & Nano-Objects 24:100587. https://doi.org/10.1016/j.nanoso.2020.100587

    Article  CAS  Google Scholar 

  36. Dimri MC, Kumar D, Aziz SB, Mishra K (2021) ZnFe2O4 nanoparticles assisted ion transport behavior in a sodium ion conducting polymer electrolyte. Ionics 27(3):1143–1157. https://doi.org/10.1007/s11581-020-03899-6

    Article  CAS  Google Scholar 

  37. Ramya CS, Selvasekarapandian S, Savitha T, Hirankumar G, Baskaran R, Bhuvaneswari MS, Angelo PC (2006) Conductivity and thermal behavior of proton conducting polymer electrolyte based on poly (N-vinyl pyrrolidone). Eur Polym J 42:2672–2677

    Article  CAS  Google Scholar 

  38. Reddy CVS, Han X, Zhu QY, Mai LQ, Chen W (2006) Conductivity and discharge characteristics of (PVC+NaClO4) polymer electrolyte systems. Eur Polym J 42:3114–3120

    Article  CAS  Google Scholar 

  39. Ramesh S, Arof AK (2001) Ionic conductivity studies of plasticized poly (vinyl chloride) polymer electrolytes. Mater Sci Eng B85:11–15

    Article  CAS  Google Scholar 

  40. Wu GM, Lin SJ, Yang CC (2006) Preparation and characterization of PVA/PAA membranes for solid polymer electrolytes. J Membr Sci 275:127–133

    Article  CAS  Google Scholar 

  41. Shuhaimi NEA, Teo LP, Woo HJ, Majid SR, Arof AK (2012) Electrical double-layer capacitors with plasticized polymer electrolyte based on methyl cellulose. Polym Bull 69:807–826

    Article  CAS  Google Scholar 

  42. Manuel Stephan A, Thirunakaran R, Renganathan NG, Sundram V, Pitchumani S, Muniyandi N, Gangadharan R, Ramamoorthy P (1999) A study on polymer blend electrolyte based on PVC/ PMMA with lithium salt. J Power Sources 82:752–758

    Article  Google Scholar 

  43. M. A. Brza, Shujahadeen B. Aziz, H. Anuar, Fathilah Ali, Rebar T. Abdulwahid, Jihad M. Hadi, 2021 Electrochemical impedance spectroscopy as a novel approach to investigate the influence of metal complexes on electrical properties of poly vinyl alcohol PVA composites Int J Electrochem Sci 16 Article ID 210542 https://doi.org/10.20964/2021.05.22

  44. Brza MA, Aziz SB, Anuar H, Ali F, Hamsan MH, Kadir MFZ (2020) Metal framework as a novel approach for the fabrication of electric double layer capacitor device with high energy density using plasticized poly(vinyl alcohol): ammonium thiocyanate based polymer electrolyte. Arab J Chem. https://doi.org/10.1016/j.arabjc.2020.08.006

    Article  Google Scholar 

  45. Brza, M. A., Aziz, S. B., Anuar, H., & Ali, F. 2020 Structural ion transport parameter and electrochemical properties of plasticized polymer composite electrolyte based on PVA: a novel approach to fabricate high performance EDLC devices Polymer Testing 106813

  46. Abdullah OG, Aziz SB, Saber DR, Abdullah RM, Hanna RR, Saeed SR (2017) Characterization of polyvinyl alcohol film doped with sodium molybdate as solid polymer electrolytes. J Mater Sci: Mater Electron 28(12):8928–8936. https://doi.org/10.1007/s10854-017-6623-1

    Article  CAS  Google Scholar 

  47. Shahab Marf A, Abdullah RM, Aziz SB (2020) Structural, morphological, electrical and electrochemical properties of PVA: CS-based proton-conducting polymer blend electrolytes. Membranes 10(4):71. https://doi.org/10.3390/membranes10040071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Singh R, Maheshwaran C, Kanchan DK, Mishra K, Singh PK, Kumar D (2021) Ion-transport behavior in tetraethylene glycol dimethyl ether incorporated sodium ion conducting polymer gel electrolyte membranes intended for sodium battery application. Journal of Molecular Liquids 336:116594. https://doi.org/10.1016/j.molliq.2021.116594

    Article  CAS  Google Scholar 

  49. Chauhan AK, Mishra K, Kumar D, Singh A (2021) Enhancing sodium ion transport in a PEO-based solid polymer electrolyte system with NaAlO2 active fillers. J Electron Mater. https://doi.org/10.1007/s11664-021-09051-y

    Article  Google Scholar 

  50. Arya A, Sharma AL (2018) Effect of salt concentration on dielectric properties of Li-ion conducting blend polymer electrolytes. J Mater Sci Mater Electron 29(20):17903–17920. https://doi.org/10.1007/s10854-018-9905-3

    Article  CAS  Google Scholar 

  51. Bhargav PB, Mohan VM, Sharma A, Rao VN (2009) Investigations on electrical properties of (PVA: NaF) polymer electrolytes for electrochemical cell applications. Curr Appl Phys 9(1):165–171. https://doi.org/10.1016/j.cap.2008.01.006

    Article  Google Scholar 

  52. Pradhan DK, Choudhary RNP, Samantaray BK (2008) Studies of dielectric relaxation and ac conductivity behavior of plasticized polymer nanocomposite electrolytes. Int J Electrochem Sci 3:12–561. https://doi.org/10.1016/j.matchemphys.2009.01.008

    Article  CAS  Google Scholar 

  53. Chopra S, Sharma S, Goel TC, Mendiratta RG (2003) Structural, dielectric and pyroelectric studies of Pb1−XCaXTiO3 thin films. Solid State Commun 127(4):299–304. https://doi.org/10.1016/s0038-1098(03)00431-9

    Article  CAS  Google Scholar 

  54. Sharma AL, Thakur AK (2014) Relaxation behavior in clay-reinforced polymer nanocomposites. Ionics 21(6):1561–1575. https://doi.org/10.1007/s11581-014-1336-4

    Article  CAS  Google Scholar 

  55. Sengwa RJ, Choudhary S (2017) Dielectric and electrical properties of PEO–Al 2 O 3 nanocomposites. J Alloy Compd 701:652–659

    Article  CAS  Google Scholar 

  56. Fadzallah IA, Noor IM, Careem MA, Arof AK (2016) Investigation of transport properties of chitosan-based electrolytes utilizing impedance spectroscopy. Ionics 22(9):1635–1645. https://doi.org/10.1007/s11581-016-1687-0

    Article  CAS  Google Scholar 

  57. Bandara TMWJ, Mellander B-E (2011) Evaluation of mobility, diffusion coefficient and density of charge carriers in ionic liquids and novel electrolytes based on a new model for dielectric response. Ionic Liquids Theory Properties New Approaches. https://doi.org/10.5772/15183

    Article  Google Scholar 

  58. Arof AK, Amirudin S, Yusof SZ, Noor IM (2014) A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys Chem Chem Phys 16(5):1856–1867. https://doi.org/10.1039/c3cp53830c

    Article  CAS  PubMed  Google Scholar 

  59. Singh R, Singh PK, Singh V, Bhattacharya B (2019) Quantitative analysis of ion transport mechanism in biopolymer electrolyte. Opt Laser Technol 113:303–309

    Article  CAS  Google Scholar 

  60. Munar A, Andrio A, Iserte R, Compañ V (2011) Ionic conductivity and diffusion coefficients of lithium salt polymer electrolytes measured with dielectric spectroscopy. J Non-Cryst Solids 357(16–17):3064–3069

    Article  CAS  Google Scholar 

  61. Arya A, Sadiq M, Sharma AL (2017) Effect of variation of different nano filler on structural, electrical, dielectric and transport properties of blend polymer nanocomposites. Ionics. https://doi.org/10.1007/s11581-017-2364-7

    Article  Google Scholar 

  62. Bandara TMWJ, Dissanayake MAKL, Albinsson I, Mellander B-E (2011) Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N + I− using electrical and dielectric measurements. Solid State Ionics 189:63–68

    Article  CAS  Google Scholar 

  63. Sørensen TS, Compañ V (1995) Complex permittivity of a conducting dielectric layer containing arbitrary binary Nernst-Planck electrolytes with applications to polymer films and cellulose acetate membranes. J Chem Soc Faraday Trans 91(23):4235–4250. https://doi.org/10.1039/ft9959104235

    Article  Google Scholar 

  64. Shukur MF, Ithnin R, Kadir MFZ (2014) Electrical properties of proton conducting solid biopolymer electrolytes based on starch– chitosan blend. Ionics 20:977–999

    Article  CAS  Google Scholar 

  65. Yusof YM, Shukur MF, Hamsan MH, Jumbri K, Kadir MFZ (2019) Plasticized solid polymer electrolyte based on natural polymer blend incorporated with lithium perchlorate for electrical double-layer capacitor fabrication. Ionics. https://doi.org/10.1007/s11581-019-03096-0

    Article  Google Scholar 

  66. Raymond C, Ronca S (2017) Chapter 6 - Relation of structure to electrical and optical properties. In: Gilbert M (ed) Brydson’s Plastics Materials, 8th edn. Butterworth-Heinemann, Oxford, pp 103–125

    Chapter  Google Scholar 

  67. A. J. Stamm, 1964 Wood and cellulose science Wood and cellulose science 19640604227

  68. Majid SR, Arof AK (2007) Electrical behavior of proton conducting chitosan-phosphoric acid-based electrolytes. Phys B Condens Matter 390(1):209–215. https://doi.org/10.1016/j.physb.2006.08.038

    Article  CAS  Google Scholar 

  69. Aziz, S. B., Brza, M. A., Saed, S. R., Hamsan, M. H., &Kadir, M. F. Z. 2020 Ion association as a main shortcoming in polymer blend electrolytes based on CS:PS incorporated with various amounts of ammonium tetrafluoroborate Journal of Materials Research and Technology

  70. Dam T, Tripathy SN, Paluch M, Jena SS, Pradhan DK (2016) Investigations of relaxation dynamics and observation of nearly constant loss phenomena in PEO20-LiCF3SO3-ZrO2 based polymer nano-composite electrolyte. Electrochim Acta 202:147–156. https://doi.org/10.1016/j.electacta.2016.03.134

    Article  CAS  Google Scholar 

  71. El Shafee E (1996) Dielectric and conductivity relaxation in sodium carboxymethyl cellulose and its acid form. Carbohydr Polym 31(1):93–98. https://doi.org/10.1016/S0144-8617(96)00053-7

    Article  Google Scholar 

  72. Agrawal SL, Awadhia A (2004) DSC and conductivity studies on PVA based proton conducting gel electrolytes. Bull Mater Sci 27(6):523–527. https://doi.org/10.1007/BF02707280

    Article  CAS  Google Scholar 

  73. Ramya CS, Selvasekarapandian S, Hirankumar G, Savitha T, Angelo PC (2008) Investigation on dielectric relaxations of PVP– NH4SCN polymer electrolyte. J Non-Cryst Solids 354(14):1494–1502. https://doi.org/10.1016/j.jnoncrysol.2007.08.038

    Article  CAS  Google Scholar 

  74. Choudhary S, Sengwa RJ (2015) Structural and dielectric studies of amorphous and semicrystalline polymers blend-based nanocomposite electrolytes. J Appl Polym Sci 132:41311

    Article  Google Scholar 

  75. Li W, Xing Y, Wu Y, Wang J, Chen L, Yang G, Tang B (2015) Study the effect of ion-complex on the properties of composite gel polymer electrolyte based on electrospun PVdF nanofibrous membrane. Electrochim Acta 151:289–296. https://doi.org/10.1016/j.electacta.2014.11.083

    Article  CAS  Google Scholar 

  76. Hema M, Tamilselvi P (2016) Lithium ion conducting PVA: PVdF polymer electrolytes doped with nano SiO2 and TiO2 filler. J Phys Chem Solids 96:42–48

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for this study from the Ministry of Higher Education and Scientific Research-Kurdish National Research Council (KNRC), Kurdistan Regional Government, Iraq. The financial support from the University of Sulaimani and the University of Human Development are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujahadeen B. Aziz.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brza, M.A., Aziz, S.B. & Sadiq, N.M. Dielectric properties and ion transport studies from Trukhan, EIS, and Bandara-Mellander approaches for plasticized sodium ion conducting polymer blend electrolytes. Ionics 29, 1847–1861 (2023). https://doi.org/10.1007/s11581-023-04933-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-04933-z

Keywords

Navigation