Skip to main content
Log in

Crystal growth, structural, optical, thermal and non-linear optical response of l-serine doping in potassium sulphato oxalate single crystals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The novel non-linear optical materials of pure and l-serine (LS) doped potassium sulphato oxalate (KSO) single crystals at different concentration levels (1 mol%, 2 mol% and 3 mol%) are grown by conventional slow evaporation solution growth technique (SEST). The grown crystals were studied for their structural, optical, thermal and second harmonic generation (SHG) efficiency properties. The Powder X-ray diffraction (PXRD) spectrum confirms the grown crystals are triclinic crystalline system with space group P1 for pure KSO and it remains unchanged for LS-doped KSO single crystals at different concentration levels except small angular shift for few intense peaks. As the doping concentration increases, the intensity of (201) peak increases due to the preferred orientation of c-axis and the absence of (− 100), (− 101) peaks. The presence of doped molecules was identified through infrared spectroscopy. The absorbance was decreased with increasing doping concentration and indirect band gap energy increased from 3.9 eV for pure KSO to 4.6 eV for 3 mol% LS-doped KSO which indicates that these materials are one of the best choices for efficient light conversion materials. The crystalline perfection of grown crystals was assessed by High-resolution X-ray diffraction (HRXRD) technique. At an optimum doping concentration, the crystalline perfection was increased due to predominant occupation of doped molecules at the sites of grain boundaries. The thermal stability of the samples was carried out using thermo gravimetric analysis (TGA) and differential thermal analysis (DTA) study. The sharp increase in photo luminescent intensity for 3 mol% LS-doped KSO at 563 nm is preferable for green light fluorescence applications. The relative second harmonic generation (SHG) efficiency was increased with increasing doping concentration. At 3 mol% of LS doping, KSO crystals showed an enhanced efficiency by 1.45 times to that of standard KDP crystals. Thus, the grown crystals were found to have potential applications for optoelectronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used for analysis part of the manuscript during the current study will be made available by the corresponding author on reasonable request.

References

  1. G. Durgababu, G. Bhagavannarayana, T. Kamalesh, R. Govindaraj, G.J. Nagaraju, A comparative study of 4-chloro 3-nitro benzophenone crystals grown by slow evaporation solution and Sankaranarayanan-Ramasamy methods. J. Mater. Sci. Mater. Electron. 33, 7973–7982 (2022)

    Article  CAS  Google Scholar 

  2. G. Durgababu, G.J. Nagaraju, G. Bhagavannarayana, Effect of 2,4-dinitrophenol dye doping on tristhioureazinc(II) sulfate single crystals: a potential nonlinear optical material”. J. Appl. Cryst. 53, 972–981 (2020)

    Article  CAS  Google Scholar 

  3. G. Durgababu, G.J. Nagaraju, G. Bhagavannarayana, Effect of malachite green dye doping in tristhiourea zinc (II) sulphate single crystal—a potential nonlinear optical material. J. Mater. Sci. Mater. Electron. 32, 2564–2578 (2021)

    Article  CAS  Google Scholar 

  4. P. Karuppasamy, V. Sivasubramani, M. Senthil Pandian, P. Ramasamy, Growth and characterization of semi-organic third order nonlinear optical (NLO) potassium 3,5-dinitrobenzoate (KDNB) single crystals. RSC Adv. 6, 109105–109123 (2016)

    Article  CAS  Google Scholar 

  5. J. Podder, The study of impurities effect on the growth and nucleation kinetics of potassium dihydrogen phosphate. J. Cryst. Growth 237, 70–75 (2002)

    Article  Google Scholar 

  6. G. Ramasamy, G. Bhagavannarayana, S. Meenakshisundaram, The concentration effects of s-, p-, d- and f-block element doping on the growth, crystalline perfection and properties of KDP crystals. Cryst. Eng. Commun. 14, 3813–3819 (2012)

    Article  CAS  Google Scholar 

  7. M. Shkir, V. Ganesh, N. Vijayan, B. Riscob, A. Kumar, D.K. Rana, M.S. Khan, M. Hasmuddin, M.A. Wahab, R.R. Babu, G. Bhagavannarayana, Analysis on structural, SHG efficiency, optical and mechanical properties of KDP single crystals influenced by glycine doping. Biomol. Spectrosc. 103, 199–204 (2013)

    Article  CAS  Google Scholar 

  8. B. Rsicob, M. Shakir, N. Vijayan, G. Bhagavannarayana, Effect of Mn(II) doping on crystalline perfection, nonlinear, optical and mechanical preoperties of KDP single crystals. Appl. Phys. A 107, 477–484 (2012)

    Article  Google Scholar 

  9. G. Bhagavannarayana, R.V. Ananthamurthy, G.C. Budakoti, B. Kumar, K.S. Bartwal, A study of the effect of annealing on Fe-doped LiNbO3 by HRXRD, XRT and FT–IR. J. Appl. Cryst. 38, 768–771 (2005)

    Article  CAS  Google Scholar 

  10. G. Bhagavannarayaana, S.K. Kushwaha, Enhancement of SHG efficiency by urea doping in ZTS single crystals and its correlation with crystalline perfection as revealed by Kurtz powder and high-resolution X-ray diffraction methods. J. Appl. Cryst. 43, 154–162 (2010)

    Article  Google Scholar 

  11. G. Bhagavannarayana, S. Parthiban, S. Meenakshisundaram, Enhancement of crystalline perfection by organic dopants in ZTS, ADP and KHP crystals as investigated by high-resolution XRD and SEM Cryst. Growth Des 8, 446–451 (2008)

    Article  CAS  Google Scholar 

  12. Y. Zhang, X. Xiaojie, Machine learning band gaps of doped-TiO2 photocatalysts from structural and morphological parameters. ACS Omegax 25, 15344–15352 (2020)

    Article  Google Scholar 

  13. Y. Aoun, B. Benhaoua, S. Benramache, B. Gasmi, Effect of deposition rate on the structural, optical and electrical properties of Zinc oxide (ZnO) thin films prepared by spray pyrolysis technique. Optik 126, 2481–2484 (2015)

    Article  CAS  Google Scholar 

  14. G. Viju, T.L. Annusha, S. Sahaya Jude Dhas, A. Panneerselvam, S. Suresh, A.S. Jebamalar, N.S. Nirmala Jothi, A. Jeya Rajendran, Crystal growth, optical, thermal and dielectric properties investigation on cadmium chloride doped L-alanine P-toluene sulfonic acid single crystal for non-linear optical applications. Opt. Quant Electr. 55, 836 (2023)

    Article  CAS  Google Scholar 

  15. A. Shiny Febena, M. Victor Antony Raj, J. Madhavan, Systematic investigation and applications of an efficient NLO crystal: glycine lithium sulphate. Mater. Today: Proceed. 8, 427–434 (2019)

    CAS  Google Scholar 

  16. S. Prince, T. Suthan, C. Gnanasambandam, Growth and characterization of organic 2,4-dinitroaniline single crystals for optical applications. J. Electron. Mater. 51, 1639–1652 (2022)

    Article  CAS  Google Scholar 

  17. M. Meena, B. Samuel Ebinezer, E. Manikandan, R.S. Sundararajan, M. Shalini, R. Natarajan, Synthesis and optical characterizations of l-phenylalanine lithium sulphate (LPLS) semi-organic single crystal. J. Mater. Sci. Mater. Electron. 34, 395 (2023)

    Article  CAS  Google Scholar 

  18. M.M. Anne, M.D. Sweetlin, Synthesis and characterization of pure and L-proline doped copper sulphate single crystals. J. Mater. Sci. Mater. Electron. 34, 974 (2023)

    Article  CAS  Google Scholar 

  19. M. Meena, M. Shalini, B.S. Ebinezer, R.S. Sundararajan, T.C. Sabari Girisun, E. Manikandan, Investigation on crystal growth, spectral, linear optical studies, and third-order nonlinear optical analysis of L-Cysteine hydrochloride monohydrate lithium sulphate (L-CHMLS) single crystals for optical limiting applications. J. Mater. Sci. Mater. Electron. 34, 1778 (2023)

    Article  CAS  Google Scholar 

  20. Y.A.S. Anitha, G. Durgababu, I. Ramakanth, U. Vijayasree, T. Kamalesh, G. Bhagavannarayana, P.V.L. Narayana, Effect of L-histidine hydrochloride monohydrate (LHICL) doping in potassium dihydrogen phosphate (KDP) on single crystal growth, structural, optical, electrical, and mechanical traits. J. Mater. Sci. Mater. Electron. 35, 594 (2024)

    Article  CAS  Google Scholar 

  21. K.D. Parikh, D.J. Dave, B.B. Parekh, M.J. Joshi, Thermal, FT-IRand SHG efficiency studies of l-arginine doped KDP crystals. Bull. Mater. Sci. 30, 105–112 (2007)

    Article  CAS  Google Scholar 

  22. J.H. Joshi, S. Kalainathan, M.J. Joshi, K.D. Parikh, Influence of L-Serine on micro structural, Spectroscopic, electrical and nonlinear optical performance of ammonium dihydrogen phosphate single crystal. J. Mater. Sci. Mater. Electron. 30, 14243–14255 (2019)

    Article  CAS  Google Scholar 

  23. M. Shkir, V. Ganesh, S. AlFaify, H. Algarni, G. Bhagavannarayana, K.K. Maurya, M.M. Abutalib, I.S. Yahia, Bulk growth, structural, vibrational, crystalline perfection, optical and dielectric properties of L-threonine doped KDP single crystals grown by Sankaranarayanan-Ramasamy (SR). Mater. Res. Innov. 21, 106–114 (2017)

    Article  CAS  Google Scholar 

  24. G. Durgababu, G. Swati, N. Vijayan, K.K. Maurya, T. Kamalesh, R. Govind Raj, G.J. Nagaraju, G. Bhagavannarayana, Influence of L-Phenylalanine doping on potassium dihydrogen phosphate: crystal growth, structural, optical and mechanical traits. J. Mater. Sci. Mater. Electron. 32, 5698–5712 (2021)

    Article  CAS  Google Scholar 

  25. R. Punniyamoorthy, R. Manimekalai, K. Uma, G. Pasupathi, Synthesis and investigation on structural, thermal, mechanical, linear optical, and nonlinear optical nature of potassium sulphato oxalate single crystals. Cryst. Res. Technol. 54, 1800203 (2019)

    Article  Google Scholar 

  26. S.K. Kurtz, T.T. Perry, A Powder Technique for the Evaluation of Nonlinear Optical Materials. J. Appl. Phys. 39, 3798–3812 (1968)

    Article  CAS  Google Scholar 

  27. M. Nageshwari, C. Rathika Thaya Kumari, G. Vinitha, S. Muthu, M. Lydia Caroline, Growth and characterization of L-serine: a promising acentric organic crystal. Physica B 541, 32–42 (2018)

    Article  CAS  Google Scholar 

  28. N. Rhimi, N. Dhahri, M. Khelifi, E.K. Hlil, J. Dhahri, Structural, morphological, optical and dielectric properties of sodium bismuth titanate ceramics. Inorg. Chem. Commun. 146, 110119 (2022)

    Article  CAS  Google Scholar 

  29. A. Yoshikawa, H. Matsunami, Y. Nanishi, Development and applications of wide bandgap semiconductors, in Wide bandgap semiconductors. ed. by K. Takahashi, A. Yoshikawa, A. Sandhu (Springer, Heidelberg, 2007), pp.1–24

    Google Scholar 

  30. Y. Zhang, X. Xiaojie, Machine learning optical band gaps of doped-ZnO films. Optik 217, 164808 (2020)

    Article  CAS  Google Scholar 

  31. M. Rajasekar, K. Meena, K. Muthu, G. Bhagavannarayana, S.P. Meenakshisundaram, Co(II), Co(II)+Mn(II), Co(II)+Ni(II) co-doping effects on tris(thiourea)zinc(II) sulphate crystals: a comparative study. Mol. Cryst. and Liq. Cryst. 623, 179–193 (2015)

    Article  CAS  Google Scholar 

  32. P. Anandan, S. Vetrivel, R. Jayavel, C. Vedhi, G. Ravi, G. Bhagavannarayana, Crystal growth, structural and photoluminescence studies of L-tyrosine hydrobromide semi organic single crystal. J. Phys. Chem. Solids 73, 1296–1301 (2012)

    Article  CAS  Google Scholar 

  33. G. Bhagavannarayana, P. Rajesh, P. Ramasamy, Interesting growth features in potassium dihydrogen phosphate: unravelling the origin and dynamics of point defects in single crystals. J. Appl. Cryst. 43, 1372–1376 (2010)

    Article  CAS  Google Scholar 

  34. D. Jananakumar, P. Mani, J. Therm, Anal. Calorim, Growth and characterization of semiorganic crystal potassium hydrogen oxalate. J. Therm. Anal. Calorim. 115, 355–359 (2014)

    Article  CAS  Google Scholar 

  35. B.B. Parekh, P.M. Vyas, S.R. Vasant, M.J. Joshi, Thermal, FT-IR and dielectric studies of gel grown sodium oxalate single crystals. Bull. Mater. Sci. 31, 143–147 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Director, RGUKT-A.P, IIIT Nuzvid for encouraging the research. The authors are highly thankful to Prof. P. Ramasamy, SSN College of engineering, Chennai, Tamilnadu and Dr N. Vijayan of CSIR-NPL (National Physical Laboratory) for providing instrumentation facilities to characterize the samples. The authors are also thankful to the Director, VSMGI, Ramachandrapuram, Andhra Pradesh for providing the crystal Growth facilities and the required chemicals.

Funding

The authors declare that no funds, grants or other support were received during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and materials properties. For the material synthesis and design of the experimental work and collection of data and analysis performed by [G Durgababu] [YAS Anitha] [I Ramakanth] [B. LakshmanaRao] [K.Srinivasa Rao], [T Kamalesh] [G Bhagavannnarayana] and [P.V. LakshmiNarayana]. The first draft of the manuscript written by [G Durgababu] and authors are read and approved the manuscript.

Corresponding author

Correspondence to G. Bhagavannarayana.

Ethics declarations

Competing interests

The authors have no relevant financial or non financial interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durgababu, G., Anitha, Y.A.S., Ramakanth, I. et al. Crystal growth, structural, optical, thermal and non-linear optical response of l-serine doping in potassium sulphato oxalate single crystals. J Mater Sci: Mater Electron 35, 795 (2024). https://doi.org/10.1007/s10854-024-12527-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12527-2

Navigation