Skip to main content
Log in

Growth and Characterization of Organic 2,4-Dinitroaniline Single Crystals for Optical Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Organic 2,4-dinitroaniline single crystals were successfully grown by slow evaporation solution growth technique. Single-crystal and powder X-ray diffraction studies were used to confirm the crystal structure. Fourier transform infrared (FTIR) and FT-Raman spectral analyses confirmed the presence of various functional groups in the grown crystal. The UV-Vis-NIR studies show that the cut-off wavelength is around 447 nm. The optical parameters such as optical band gap, Urbach energy, steepness parameter and electron-phonon interaction were calculated. The photoluminescence studies show green light emission. The thermogravimetric and differential thermal analyses expose the melting and decomposition points of the grown 2,4-dinitroaniline single crystal. The kinetic parameters such as the activation energy, frequency factor, entropy, enthalpy and Gibbs free energy were calculated by Coats Redfern and Horowitz-Mertzger methods. The dielectric studies were analyzed by the parallel plate capacitor method using the Agilent LCR meter. The electrical parameters such as plasma energy, Penn gap and Fermi energy of the grown single crystal were calculated. The third-order nonlinear optical properties of 2,4-dinitroaniline were measured using the Z-scan technique, with a 532-nm diode-pumped continuous wave (CW) Nd:YAG laser.

Graphical Abstract

2,4-dinitroaniline single crystal

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. I. Sharma, and A.S. Hassanien, J. Non Cryst. Solids. 548, 120326 (2020).

    Article  CAS  Google Scholar 

  2. P. Gunter, Nonlinear Optical Effects and Materials (Berlin: Springer-verlag, 2000).

    Book  Google Scholar 

  3. S. Sun, and N.S. Sariciftci, Organic Photovoltaics Mechanisms, Materials and Devices (USA: CRC Press Taylor and Francis group, 2005).

    Google Scholar 

  4. I.M. El-Radaf, H.Y.S. Al-Zahrani, and A.S. Hassanien, J. Mater. Sci. Mater. Electron. 31, 8336 (2020).

    Article  CAS  Google Scholar 

  5. A.S. Hassanien, I. Sharma, and K.A. Aly, Physica B Condens. Matter. 613, 412985 (2021).

    Article  CAS  Google Scholar 

  6. C.T. Yan, T.S. Shih, and J.F. Jen, J. Talanta. 64, 650 (2004).

    Article  CAS  Google Scholar 

  7. H.L. Wang, F. Huang, A.G.M. Diamid, Y.Z. Wang, and D.D. Gebler, J. Epstein. Synth. Met. 78, 33 (1996).

    Article  CAS  Google Scholar 

  8. P. Novak, K. Muller, K.S.V. Santhanam, and O. Haas, J. Chem. Rev. 97, 207 (1997).

    Article  CAS  Google Scholar 

  9. J. Zyss, Molecular Nonlinear Optics: Materials Physics and Devices (New York: Academic Press, 1994).

    Google Scholar 

  10. G.L. Findley, T.P. Carsey, and S.P. MeGlynn, J. Am. Chem. Soc. 101, 4511 (1979).

    Article  CAS  Google Scholar 

  11. K.H.M. Mannan, M.B. Hossain, and M.D. Shamsuzzoha, J. Acta Cryst. B. 29, 2315 (1973).

    Article  CAS  Google Scholar 

  12. JCPDS file card no: 97-02-9, 2θ 1792

  13. A.S. Hassanien, I.M. El Radaf, and A.A. Akl, J. Alloys Compd. 849, 156718 (2020).

    Article  CAS  Google Scholar 

  14. T. Suthan, P.V. Dhanaraj, N.P. Rajesh, C.K. Mahadevan, and G. Bhagavannarayana, Cryst. Eng. Comm. 13, 4018 (2011).

    Article  CAS  Google Scholar 

  15. T. Suthan, N.P. Rajesh, C.K. Mahadevan, D. Sajan, and G. Bhagavannarayana, Mater. Chem. Phys. 130, 915 (2011).

    Article  CAS  Google Scholar 

  16. A.S. Hassanien, R. Neffati, and K.A. Aly, Optik 212, 164681 (2020).

    Article  CAS  Google Scholar 

  17. R.P. Jebin, T. Suthan, T.R. Anitha, N.P. Rajesh, and G. Vinitha, J. Mater. Sci. Mater. Electron. 32, 3232 (2021).

    Article  CAS  Google Scholar 

  18. F. Yakuphanoglu, B.F. Senkal, and A. Sarac, J. Electron. Mater. 37, 930 (2008).

    Article  CAS  Google Scholar 

  19. A. Dev, S. Chakrabarti, S. Kar, and S. Chaudhuri, J. Nanopart. Res. 7, 195 (2005).

    Article  CAS  Google Scholar 

  20. S. Banerjee, A. Kumar, and J. NuclInstrum, Methods Phys. Res. B. 269, 2798 (2011).

    CAS  Google Scholar 

  21. B.K. Periyasamy, R.S. Jebas, N. Gopalakrishnan, and T. Balasubramanian, Mater. Lett. 61, 4246 (2007).

    Article  CAS  Google Scholar 

  22. D.K. Schroder, Semiconductor Material and Device Characterization (New York: Wiley, 1990).

    Google Scholar 

  23. M. Zarrinkhameh, A. Zendehnam, S.M. Hosseini, N. Robatmili, and M. Arabzadegan, J. Bull. Mater. Sci. 37, 533 (2014).

    Article  CAS  Google Scholar 

  24. A.S. Hassanien, and A.A. Akl, J. Superlattices Microstruct. 89, 153 (2016).

    Article  CAS  Google Scholar 

  25. M. Karimi, M. Rabiee, F. Moztarzadeh, M. Tahriri, and M. Bodaghi, J. Curr. Appl. Phys. 9, 1263 (2009).

    Article  Google Scholar 

  26. A.W. Coats, and J.P. Redfern, J. Poly. Sci. 3, 917 (1965).

    CAS  Google Scholar 

  27. H.H. Horowitz, and G. Metzger, J. Anal. Chem. 35, 1464 (1963).

    Article  CAS  Google Scholar 

  28. A. Broido, J. Polym. Sci. 7, 1761 (1969).

    CAS  Google Scholar 

  29. K.K. Bamzai, and S. Kumar, J. Mater. Chem. Phys. 107, 200 (2008).

    Article  CAS  Google Scholar 

  30. P.S. Abthagir, and R. Saraswathi, J. Mater. Chem. Phys. 92, 21 (2005).

    Article  Google Scholar 

  31. S.H. Guzar, and Q.H. Jin, J. Chem. Res. Chin. Univ. 24, 143 (2008).

    Article  CAS  Google Scholar 

  32. H.T.S. Britton, Hydrogen Ions, 3rd ed., (London: Chapman and Hall, 1942).

    Google Scholar 

  33. E. Karapmar, I.H. Gubbuk, B. Taner, P. Deveci, and E. Ozcan, J. Chem. 60, 997 (2013).

    Google Scholar 

  34. N. Mathur, S. Bargotya, and R. Mathur, J. Appl. Chem. 3, 712 (2014).

    Google Scholar 

  35. J.B. Devhade, J. Appl. Chem. 4, 1556 (2015).

    CAS  Google Scholar 

  36. M.R.R. Prasad, K.S. Babu, and B. Sreedhar, J. Appl. Chem. 4, 1757 (2015).

    CAS  Google Scholar 

  37. A. Chaudhary, and A. Singh, J. Appl. Chem. 5, 1038 (2016).

    CAS  Google Scholar 

  38. M. Sharma, S. Agarwal, and A. Mishra, J. Appl. Chem. 3, 1139 (2014).

    Google Scholar 

  39. P.P. Talware, and P.M. Yeole, J. Appl. Chem. 3, 902 (2014).

    CAS  Google Scholar 

  40. T. Suthan, N.P. Rajesh, P.V. Dhanaraj, and C.K. Mahadevan, Spectrochim. Acta A Mol. Biomol. Spectrosc. 75, 69 (2010).

    Article  CAS  Google Scholar 

  41. T. Suthan, and N.P. Rajesh, J. Cryst. Growth. 312, 3156 (2010).

    Article  CAS  Google Scholar 

  42. T. Suthan, N.P. Rajesh, C.K. Mahadevan, K.S. Kumar, and G. Bhagavannarayana, Spectrochim. Acta A Mol. Biomol. Spectrosc. 79, 1443 (2011).

    Article  CAS  Google Scholar 

  43. L. Jentjens, N.L. Raeth, K. Peithmann, and K. Maier, J. Appl. Phys. 109, 121 (2011).

    Article  Google Scholar 

  44. D.R. Penn, J. Phys. Rev. 128, 2093 (1962).

    Article  CAS  Google Scholar 

  45. V. Kumar, and B.S.R. Sastry, J. Phys. Chem. Solids. 66, 99 (2005).

    Article  CAS  Google Scholar 

  46. S.S.B. Solanki, N.P. Rajesh, and T. Suthan, J. Mater. Sci. Mater. Electron. 32, 1808 (2021).

    Article  Google Scholar 

  47. R.K. Choubey, S. Medhekar, R. Kumar, S. Mukherjee, and S. Kumar, J. Mat. Sci. Elect. Mat. 25, 1410 (2014).

    Article  CAS  Google Scholar 

  48. R.P. Jebin, T. Suthan, N.P. Rajesh, and G. Vinitha, J. Opt. Laser Technol. 115, 500 (2019).

    Article  CAS  Google Scholar 

  49. M. Sheik-Bahae, A.A. Said, T. Wei, D.J. Hagan, and E.W. Van Stryland, Sens. IEEE J. Quant. Elect. 26, 760 (1990).

    Article  CAS  Google Scholar 

  50. R.M. Jauhar, P. Vivek, K. Sudhakar, S. Kalainathan, M.N. Mohideen, and P. Murugakoothan, J. Therm. Anal. Cal. 124, 871 (2015).

    Article  Google Scholar 

  51. P. Nagapandiselvi, C. Baby, and R. Gopalakrishnan, J. RSC Adv. 4, 22350 (2014).

    Article  CAS  Google Scholar 

  52. M. Sheik-Bahae, A.A. Said, and E.W. Van Stryland, J. Opt. Lett. 14, 955 (1989).

    Article  CAS  Google Scholar 

  53. E.W. Van Stryland, M. Sheik-Bahae, M.G. Kuzyk, C.W. Dirk (Eds.), Characterization Techniques and Tabulations for Organic Nonlinear Materials (Marcel DekkerInc, 1998)

  54. T. Kanagasekaran, P. Mythili, P. Srinivasan, A.Y. Nooraldeen, P.K. Palanisamy, and R. Gopalakrishnan, J. Cryst. Growth. Des. 8, 2335 (2008).

    Article  CAS  Google Scholar 

  55. V. Subashini, S. Ponnusamy, and C. Muthamizhchelvan, J. Cryst. Growth. 363, 211 (2013).

    Article  Google Scholar 

  56. S. Shettigar, G. Umesh, K. Chandrasekaran, and B. Kalluraya, J. Synth. Met. 157, 142 (2007).

    Article  CAS  Google Scholar 

  57. Y.S. Zhou, E.B. Wang, and J. Peng, J. Polyhedron. 18, 1419 (1999).

    Article  CAS  Google Scholar 

  58. N.Y. Kamber, G. Zhang, S. Liu, S.M. Mikha, and W. Haidong, J. Opt. Commun. 184, 475 (2000).

    Article  CAS  Google Scholar 

  59. M.T. Zhao, B.P. Singh, and P.N. Prasad, J. Chem. Phys. 89, 5535 (1988).

    Article  CAS  Google Scholar 

  60. H.M. Shanshoola, M. Yahaya, W.M.M. Yunus, and I.Y. Abdullah, J. Teknol. 78, 33 (2016).

    Google Scholar 

  61. H. Fan, Q. Ren, X. Wang, T. Li, J. Sun, G. Zhang, D. Xu, G. Yu, and Z. Sun, Nat. Sci. 1, 136 (2009).

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the University Grants Commission (UGC), South Eastern Regional Office (SERO), Government of India, under the grant of Minor Research Project UGC Reference No: F. MRP-7005/16 (SERO/UGC) Link No: 7005, is hereby gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Suthan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prince, S., Suthan, T. & Gnanasambandam, C. Growth and Characterization of Organic 2,4-Dinitroaniline Single Crystals for Optical Applications. J. Electron. Mater. 51, 1639–1652 (2022). https://doi.org/10.1007/s11664-022-09428-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09428-7

Keywords

Navigation