Skip to main content
Log in

Synthesis and characterization of pure and l-proline doped copper sulphate single crystals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Proficient semi-organic non linear optical pure and 0.01 wt% l-Proline doped Copper Sulphate (CS) pentahydrate single crystals with molecular formula CuSO4.5H2O were synthesized by the process of slow evaporation technique using de-ionized water as the solvent. Powder X-ray diffraction analysis revealed that the grown crystals belong to triclinic system. The various functional groups were identified by the Fourier transform infrared (FTIR) spectroscopy. The optical quality of the single crystals and band gap energy were found out by the UV–Vis NIR spectral analysis and the refractive index of the material has been deliberated. The thermal stability of the single crystals was analyzed by thermo gravimetric (TG) and differential thermal analyses (DTA). The kinetic parameters have been determined from TGA data. The dielectric response of the synthesized crystals was studied by dielectric studies. The mechanical stability of the grown crystals was examined using Vicker’s hardness tester. The second order nonlinear optical properties of the crystals were determined using Q switched High Energy Nd: YAG Laser. The pure and doped crystals yield sufficient opposition to laser beam with threshold values 26.697 GW/cm2 and 22.652 GW/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

Data availability

All data engendered or explored during this work are consisted in this manuscript.

References

  1. K. Sangeetha, S. Thamotharan, R. RameshBabu, S. MadanKumar, Linear and nonlinear optical properties of 4-nitrobenzoic acid (4-NBA) single crystals. Bull. Mater. Sci. 41, 73 (2018). https://doi.org/10.1007/s12034-018-1583-5

    Article  CAS  Google Scholar 

  2. R.K. Choubey, S. Medhekar, R. Kumar, S. Mukherjee, S. Kumar, Study of nonlinear optical properties of organic dye by Z-scan technique using He–Ne laser. J. Mater. Sci. Mater. Electron. 25(3), 1410–1415 (2014). https://doi.org/10.1007/s10854-014-1743-3

    Article  CAS  Google Scholar 

  3. T. Arivazhagana, S.S.B. Solankia, R.N. Perumala, Investigation on crystal growth and characterization of organic nonlinear optical triphenylmethane single crystal by vertical Bridgman technique. J. Crystal Growth (2018). https://doi.org/10.1016/j.jcrysgro.2018.05.025

    Article  Google Scholar 

  4. P. Zhao, Z. Wang, J. Chen, Y. Zhou, F. Zhang, Nonlinear optical and optical limiting properties of polymeric carboxyl phthalocyanine coordinated with rare earth atom. Opt. Mater. 66, 98–105 (2017). https://doi.org/10.1016/j.optmat.2017.01.029

    Article  CAS  Google Scholar 

  5. S. Prince, T. Suthan, C. Gnanasambandam, Growth and characterization of organic 2,4-dinitroaniline single crystals for optical applications. J. Elec. Mater. (2022). https://doi.org/10.1007/s11664-022-09428-7

    Article  Google Scholar 

  6. M. Anis, R. Shaikh, M. Shirsat, S. Hussaini, Opt. Laser Technol. 60, 124–129 (2014)

    Article  Google Scholar 

  7. R. Shaikh, M. Anis, M. Shirsat, S. Hussaini, J. Optoelectron. Adv. Mater. 16, 1147–1152 (2014)

    CAS  Google Scholar 

  8. S.M. Azhar, S.S. Hussaini, M.D. Shirsat, G. Rabbani, S. Mohd Shkir, H.A. Alfaify, M.I. Ghramh, M.A. Baig, Growth and optical studies of tris (thiourea) potassium barium sulphate crystal: a novel semiorganic NLO bimetallic crystal. Mater. Res. Innov. (2017). https://doi.org/10.1080/14328917.2017.1392694

    Article  Google Scholar 

  9. Z. Jiao, S. Li, Q. Yan, X. Wang, D. Shen, Growth and optical properties of Eu2+/Li+-co-doped SrB4O7 single crystals. J. Phys. Chem. Sol. 72, 252–255 (2011)

    Article  CAS  Google Scholar 

  10. M. Abudoureheman, Li. Wang, X. Zhang, Yu. Hongwei, Z. Yang, C.L.J.H.S. Pan, Pb7O(OH)3(CO3)3(BO3): first mixed borate and carbonate nonlinear optical material exhibiting large second-harmonic generation response. Inorg. Chem. 54, 4138–4142 (2015)

    Article  CAS  Google Scholar 

  11. M. Abudoureheman, S. Han, Y. Wang, B.-H. Lei, Z. Yang, S. Pan, A3Sr2P7O21(A = Rb, Cs): two polyphosphates based on different types of P–O chains and ring structures. Inorg. Chem. 56, 3939–3945 (2017)

    Article  CAS  Google Scholar 

  12. M.I. Baig, M.D. Mohd Anis, A.M. Shirsat, H.H. Alshehri, S.S.H. Somaily, Exploring impact of Zn2+ on laser induced optical and electrical traits of KH2PO4 crystal for NLO device applications. Optik (2021). https://doi.org/10.1016/j.ijleo.2020.165998

    Article  Google Scholar 

  13. X.X. YunZhang, Modeling of lattice parameters of cubic perovskite oxides and halides. Heliyon 7, e07601 (2021). https://doi.org/10.1016/j.heliyon.2021.e07601

    Article  CAS  Google Scholar 

  14. Y. Zhang, Xu. Xiaojie, Machine learning lattice constants of zircon-group minerals MXO4. Struct. Chem. 32, 1311–1326 (2021). https://doi.org/10.1007/s11224-020-01699-2

    Article  CAS  Google Scholar 

  15. Y. Zhang, X. Xiaojie, Machine learning optical band gaps of doped-ZnO films. Optik Int. J. Light Electron Opt. 217, 164808 (2020). https://doi.org/10.1016/j.ijleo.2020.164808

    Article  CAS  Google Scholar 

  16. Y. Zhang, X. Xiaojie, Machine learning band gaps of doped-TiO2 photocatalysts from structural and morphological parameters. ACS Omegax (2020). https://doi.org/10.1021/acsomega.0c01438

    Article  Google Scholar 

  17. M. Anis, S. Mohd Shkir, M.I. AlFaify, A.M. Baig, H.A. Alshehri, Exploring remarkable impact of thiourea in enhancing the performance of NH4H2PO4 single crystal for photonic device applications. Mater. Chem. Phys. 246, 122809 (2020). https://doi.org/10.1016/j.matchemphys.2020.122809

    Article  CAS  Google Scholar 

  18. M. Anis, M.I. Baig, G.G. Muley, S. AlFaiFy, M.A. Khan, Impact of increasing concentration of l-alanine environment on structural, UV–vis, SHG efficiency, luminescence and dielectric traits of zinc thiourea chloride (ZTC) crystal. Optik 185, 317–324 (2019)

    Article  CAS  Google Scholar 

  19. S. Aktas, A novel purification method for copper sulfate using ethanol. Hydrometallurgy 106, 175–178 (2011)

    Article  CAS  Google Scholar 

  20. H.W. Richardson, Handbook of copper compounds and applications (CRC Press, 1997)

    Book  Google Scholar 

  21. V. Manomenova, M. Stepnova, V. Grebenev, E. Rudneva, A. Voloshin, Growth of CuSO4 5H2O single crystals and study of some of their properties. Crystallogr. Rep. 58, 513–516 (2013)

    Article  CAS  Google Scholar 

  22. T. Ishii, S. Fujita, Crystallization from supersaturated cupric sulfate solutions in a batch wise stirred tank. Chem. Eng. J. 21, 255–260 (1981)

    Article  CAS  Google Scholar 

  23. R.C. Zumstein, R.W. Rousseau, Agglomeration of copper sulfate pentahydrate crystals within well-mixed crystallizers. Chem. Eng. Sci. 44, 2149–2155 (1989)

    Article  CAS  Google Scholar 

  24. M. Giulietti, M. Seckler, S. Derenzo, J. Valarelli, Changes in copper sulfate crystal habit during cooling crystallization. J. Cryst. Growth 166, 1089–1093 (1996)

    Article  CAS  Google Scholar 

  25. M. Giulietti, M. Seckler, S. Derenzo, L. Schiavon, J. Valarelli, J. Nyvlt, Effect of selected parameters on crystallization of copper sulphate pentahydrate. Cryst. Res. Technol. 34, 959–967 (1999)

    Article  CAS  Google Scholar 

  26. T. Suthan, N.P. Rajesh, Growth andcharacterizationoforganicmaterial4-nitrobenzaldehyde single crystal using modified vertical Bridgman technique. J. Crystal Growth 312(21), 3156–3160 (2010). https://doi.org/10.1016/j.jcrysgro.2010.08.002

    Article  CAS  Google Scholar 

  27. T.T.H. Nguyen, Influence of crystallisation environment on the nucleation and growth of single crystals of (RS)-ibuprofen (University of Leeds, 2013)

    Google Scholar 

  28. S. Nalini Jayanthi, A.R. Prabhakaran, D. Subashini, K. Thamizharasan, Crystallization and Characterization of NLO active glycine copper sulphate crystal. Chalcogenide Lett. 11, 241–247 (2014)

    Google Scholar 

  29. N.A. Bakr, T.A. Al-Dhahir, S.B. Mohammad, Growth of copper sulfate pentahydrate single crystals by slow evaporation technique. J. Adv. Phys. 13, 4651–4656 (2017)

    Article  CAS  Google Scholar 

  30. R.C. Zumstein, R.W. Rousseau, Anomalous growth of large and small copper sulfate pentahydrate crystals. Ind. Eng. Chem. Res. 28, 289–297 (1989)

    Article  CAS  Google Scholar 

  31. B.R. Srinivasan, Can zinc (II) ions be doped into the crystal structure of l-proline cadmium chloride monohydrate? Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 116, 635–638 (2013). https://doi.org/10.1016/j.saa.2013.07.025

    Article  CAS  Google Scholar 

  32. S.N. Jayanthi, A.R. Prabhakaran, D. Subashini, K. Thamizharasan, Crystallization and characterization of NLO active glycine copper sulphate crystal. Chalcogenide Lett. 11, 241–247 (2014)

    CAS  Google Scholar 

  33. S. Mary Delphine, R. Krishna Priya, T.L.A. Thai, S. Ajitha, Growth and characterization of l-histidine doped copper sulphate crystals. Arch. Appl. Sci. Res. 6, 157–161 (2014)

    Google Scholar 

  34. M. Mary Anne, S. Perumal, K. Monikanda Prabu, Growth, structural and optical studies on pure and l-histidine doped single crystals of copper sulphate. a(A) 6, 6–101 (2015)

    Google Scholar 

  35. F.A. Miller, C.H. Wilkins, Infrared spectra and characteristic frequencies of inorganic ions. Anal. Chem. 24, 1253–1294 (1952)

    Article  CAS  Google Scholar 

  36. F.J. Justel, D.M. Camacho, M.E. Taboada, K.J. Roberts, Crystallisation of copper sulphate pentahydrate from aqueous solution in absence and presence of sodium chloride. J. Crystal Growth (2019). https://doi.org/10.1016/j.jcrysgro.2019.125204

    Article  Google Scholar 

  37. A. Kandasamy, R. Siddeswaran, P. Murugakoothan, P. Suresh Kumar, R. Mohan, Cryst. Growth Des. 7, 183–186 (2007)

    Article  CAS  Google Scholar 

  38. V. Vasantha Kumari, P. Selvarajan, R. Thilagavathi, Growth and characterization of l-proline potassium bromide: a semiorganic NLO crystal. J. Chem. Pharm. Res. 7(9), 133–143 (2015)

    Google Scholar 

  39. S. Myung, M. Pink, M.H. Baik, D.E. Clemmer, Acta Crystallogr. 61, 506–508 (2005)

    Google Scholar 

  40. S.P. Ramteke, M.I. Mohd Anis, H. Baig, G.G.M. Algarni, Optimizing optical traits of ammonium zinc sulphate hydrate crystal exploiting Nd3+ for photonic device applications. Optik Int. J. Light Electron Opt. 197, 163219 (2019). https://doi.org/10.1016/j.ijleo.2019.163219

    Article  CAS  Google Scholar 

  41. M. Iyanar, J.T.J. Prakash, C. Muthamizhchelvan, S. Ekadevasena, J.M.S. Gnanaraj, S.S. Dhavud, Growth and characterization of l-proline doped ADP crystals for optoelectronic applications. Mater. Sci. Res. India 12, 22–27 (2015)

    Article  Google Scholar 

  42. S.S. Mohd Anis, M.S. Hussaini, S. AlFaify, M.I. Baig, G.G. Muley, Uncovering the influence of Ni2+ on optical and dielectric properties of NH4H2PO4 (ADP) crystal. Optik 157, 592–596 (2018). https://doi.org/10.1016/j.ijleo.2017.11.127

    Article  CAS  Google Scholar 

  43. S.P. Ramteke, S.M. Azhar, G.G. Muley, M.I. Baig, A.M. Alshehrid, H.H. Somaily, M. Anis, Growth and optimization of optical traits of copper sulphate crystal exploiting l-Ascorbic acid for photonic device appliications. Chin. J. Phys. (2021). https://doi.org/10.1016/j.cjph.2020.04.006

    Article  Google Scholar 

  44. D. Abila Darling, S.E. Joema, Elucidation of optical, thermal, morphological and antimicrobial efficacy of l-tryptophan hydrochloride single crystals. Optik Int. J. Light Electron Opt. 253, 168585 (2022). https://doi.org/10.1016/j.ijleo.2022.168585

    Article  CAS  Google Scholar 

  45. P. Ilayabarathi, J. Chandrasekaran, Growth and characterization of l-alanine cadmium bromide a semiorganic nonlinear optical crystals’. Spectro. Acta Part A: Mol. Biomol. Spec. 96, 684–689 (2012). https://doi.org/10.1016/j.saa.2012.07.027

    Article  CAS  Google Scholar 

  46. M. Iyanar, J.T.J. Prakash, C. Muthamizhchelvan, S. Ekadevasena, Growth and characterization of l-proline doped ADP crystals for optoelectronic applications. Mat. Sci. Res. India 2(1), 22–27 (2015). https://doi.org/10.13005/msri/120104

    Article  Google Scholar 

  47. T. Arivazhagan, S.S.B. Solanki, R.N. Perumal, Investigation on crystal growth and characterization of organic nonlinear optical triphenylmethane single crystal by vertical Bridgman technique. J. Cry Growth (2018). https://doi.org/10.1016/j.jcrysgro.2018.05.025

    Article  Google Scholar 

  48. R.K. Raju, S.M. Dharamaprakash, H.S. Jayanna, Effect of NaCl doping on growth, characterization, optical and dielectric properties of potassium hydrogen phthalate (KHP) crystals. Adv. Mater. Phys. Chem. 5, 399–407 (2015). https://doi.org/10.4236/ampc.2015.510040

    Article  CAS  Google Scholar 

  49. A.R. Tuama, T.M. Al-Saadi, Study the structural and optical properties of magnesium sulphate heptahydrate single crystal grown by solution growth method. Energy Procedia 157, 709–718 (2019)

    Article  CAS  Google Scholar 

  50. A.N. Winchell, H. Winchell, Optical properties of artificial minerals (Academic, New York, 1967)

    Google Scholar 

  51. S. Anandhi, T.S. Shyju, R. Gopalakrishnan, Studies on growth, thermal, optical, vibrational properties and hyperpolarizability of a complex orthonitroaniline with picric acid. J. Cryst. Growth 312, 3292–3299 (2010). https://doi.org/10.1016/j.jcrysgro.2010.08.007

    Article  CAS  Google Scholar 

  52. G. Maheshwaran, K. Velsankar, G. Parvathy, Effective growth and characterization of piperazinium orthophthalate single crystal yielding high second harmonic generation efficiency. Chin. J. Phys. 64, 65–78 (2020). https://doi.org/10.1016/j.cjph.2020.01.005

    Article  CAS  Google Scholar 

  53. S. Prince, T. Suthan, C. Gnanasambandam, N.P. Rajesh, G. Vinitha, Growth and characterization of organic 4-methyl-2-nitroaniline single crystals for nonlinear optical applications. J. Mater. Sci. Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-07772-2

    Article  Google Scholar 

  54. R. Ananda Kumari, M.R. Jagadeesh, H.M. Suresh Kumar, Growth and characterization of an organic NLO crystal: l-alanine-2-furoic acid. Mater. Sci. Arch. App. Sci. Res. 6, 188–197 (2014)

    Google Scholar 

  55. J. Anitha Hudson, C.M. Padma, C.K. Mahadevan, Growth and characterization of ADP single crystals added with CdS. Int. J. Eng. Res. Appl. 1, 257–266 (2014)

    Google Scholar 

  56. N.A. Bakr, T.A. Al-Dhahir, S.B. Mohammad, Growth of copper sulfate pentahydrate single crystals by slow evaporation technique. J. Adv. Phys. (2017). https://doi.org/10.24297/jap.v13i2.5963

    Article  Google Scholar 

  57. B.C. Smith, Infrared spectral interpretation-a systematic approach (CRC Press, New York, 1999)

    Google Scholar 

  58. V. Vasantha Kumari, P. Selvarajan, R. Thilagavathi, Growth and characterization of l-proline potassium bromide: a semiorganic NLO crystal. J. Chem. Pharm. Res. 7(9), 133–143 (2015)

    Google Scholar 

  59. F.A. Miller, C.H. Wilkins, Infrared spectra and characteristic frequencies of inorganic ions. Anal. Chem. 24, 1253–1294 (1952). https://doi.org/10.1021/ac60068a007

    Article  CAS  Google Scholar 

  60. S. Ravi, S. Chenthamarai, Growth and characterization of single crystals of thiourea based compounds. Indian J. Sci. Res. 9(1), 051–057 (2014). https://doi.org/10.5958/2250-0138.2014.00009.1

    Article  Google Scholar 

  61. M. Prakash, D. Geetha, M. Lydia Caroline, Crystal growth and characterization of l-phenylalaninium trichloroacetate—a new organic nonlinear optical material. Physica B 406, 2621–2625 (2011). https://doi.org/10.1016/j.physb.2011.04.002

    Article  CAS  Google Scholar 

  62. S. Ajitha, R. Krishna Priya, T.L.A. Thai, S.M. Delphine, Effect of l-histidine in magnesium sulphate crystals. Arch. Phys. Res. 5(3), 1–5 (2014)

    CAS  Google Scholar 

  63. S.E. Joema, S. Perumal, S. Ramalingam, P. Selvarajan, Studies on structural, optical, mechanical and thermal properties of undoped and urea-doped l-histidine bromide (LHB) single crystals. Recent Res. Sci. Technol. 3(3), 63–68 (2011)

    CAS  Google Scholar 

  64. P. Kumaresan, S. Moorthy Babu, P.M. Anbarasan, Growth and characterization of metal ions and dyes doped KDP single crystals for laser applications. Mater. Res. Bull. 43, 1716–1723 (2008). https://doi.org/10.1016/j.materresbull.2007.07.018

    Article  CAS  Google Scholar 

  65. S.P. Ramteke, S.M. Azhar, G.G. Muley, M.I. Baig, A.M. Alshehri, H.H. Somaily, M. Anis, Growth and optimization of optical traits of copper sulphate crystal exploiting l-ascorbic acid for photonic device applications. Chin. J. Phys. (2021). https://doi.org/10.1016/j.cjph.2020.04.006

    Article  Google Scholar 

  66. K. Kumara, K. Ramamoorthya, P.M. Koinkar, A novel in situ synthesis and growth of ZnAl2O4 thin films. J. Cry. Growth 289, 405–407 (2006). https://doi.org/10.1016/j.jcrysgro.2005.11.007

    Article  CAS  Google Scholar 

  67. M. Peer Mohameda, P. Jayaprakasha, M. Nageshwari, Crystal growth, structural, spectral, thermal, linear and nonlinear optical characterization of a new organic nonlinear chiral compound: l-tryptophan-fumaric acid-water (1/1/1) suitable for laser frequency conversion. J. Mol. Struct. (2017). https://doi.org/10.1016/j.molstruc.2017.04.002

    Article  Google Scholar 

  68. A.S. Hassanien, R. Neffati, K.A. Aly, Impact of Cd-addition upon optical properties and dispersion parameters of thermally evaporated CdxZn1x Se films: discussions on band gap engineering, conduction and valence band positions. Optik Int. J. Light Electron Opt. 212, 164681 (2020). https://doi.org/10.1016/j.ijleo.2020.164681

    Article  CAS  Google Scholar 

  69. R.P. Jebin, T. Suthan, T.R. Anitha, N.P. Rajesh, G. Vinitha, Growth and characterization of organic Material 3, 4-dimethoxybenzaldeh yde-2, 4-dinitroaniline single crystal. J. Mater. Sci.: Mater. Electron. 32, 3232–3246 (2021). https://doi.org/10.1007/s10854-020-05072-1

    Article  CAS  Google Scholar 

  70. S. Sudhaa, P. Jayaprakashd, C.R.T. Kumarie, M. Nageshwari, Growth and characterization of Catena-((μ4-dihydrogen oxalate)-bis (μ3-hydrogen oxalato)-(μ2-dihydrogen oxalate)-tetra aqua di rubidium {Rb (HC2O4) (H2C2O4)(H2O)2}1∞ single crystal for nonlinear optical applications. Chin. J. Phys. (2019). https://doi.org/10.1016/j.cjph.2019.08.017

    Article  Google Scholar 

  71. D.K. Schroder, Semiconductor material and device characterization (Wiley, New York, 1990), p.587

    Google Scholar 

  72. P. Vasudevan, S. Sankar, S. Gokul Raj, Studies on second harmonic generation efficiency of organic material l-arginine maleate dehydrate. Optik 124, 4155–4158 (2013). https://doi.org/10.1016/j.ijleo.2012.12.036

    Article  CAS  Google Scholar 

  73. P. Chellapappa, S. Guosh, Determination of optical constants and mechanical properties of thiourea based metal complex crystal. Mater. Rep. 1, 30–36 (2018)

    Google Scholar 

  74. P. Jayaprakasha, M. Peer Mohameda, M. Lydia Caroline, Growth, spectral and optical characterization of a novel nonlinear optical organic material: d-Alanine DL-Mandelic acid single crystal. J. Mol. Struct. (2017). https://doi.org/10.1016/j.molstruc.2016.12.026

    Article  Google Scholar 

  75. F.Q. Meng, M.K. Lu, Z.H. Yang, H. Zeng, Thermal and crystallographic properties of a new NLO material, urea-(d) tartaric acid single crystal. Mater. Lett. 33, 265–268 (1998). https://doi.org/10.1016/S0167-577X(97)00113-4

    Article  CAS  Google Scholar 

  76. P.V. Dhanaraj, N.P. Rajesh, Studies on growth, crystal structure and characterization of novel organic nicotinium trifluoroacetate single crystals. INTECH (2013). https://doi.org/10.5772/53795

    Article  Google Scholar 

  77. L. Cheng, W. Li, Y. Li, Y. Yang, Y. Li, Thermal analysis and decomposition kinetics of the dehydration of copper sulfate pentahydrate. J. Ther. Analy. Calor. 135, 2697 (2019)

    Article  CAS  Google Scholar 

  78. P. Reena, S.E. Joema, D. Abila Darling, S. Sindhusha, M. Abith, Systematic discussion on nonlinear optical and antibacterial activity of guanidinium benzene-1, 2-dicarboxylate (GUBD) single crystal for laser and biomedical applications. J. Mater. Sci. Mater. Electron. (2021). https://doi.org/10.1007/s10854-021-07019-6

    Article  Google Scholar 

  79. A.W. Coats, J.P. Redfern, J. Polym. Sci. 3, 917 (1965)

    CAS  Google Scholar 

  80. H.W. Horowitz, G. Metzger, A new analysis of thermo gravimetric traces. Anal. Chem. 35, 1464–1468 (1963). https://doi.org/10.1021/ac60203a013

    Article  CAS  Google Scholar 

  81. K.K. Bamzai, S. Kumar, Studies on kinetics and mechanism of thermal decomposition of yttrium tartrate trihydrate crystals. Mater. Chem. Phys. 107, 200–207 (2008). https://doi.org/10.1016/j.matchemphys.2007.06.059

    Article  CAS  Google Scholar 

  82. T. Hatakeyama, F.X. Quinn, Thermal analysis fundamentals and applications to polymer science (John Wiley and Sons, Chichester, 1994)

    Google Scholar 

  83. Yu. Yuye, Kinetic of dehydration of CuSO4·5H2O. Asian J. Chem. 19(3), 2023–2028 (2007)

    Google Scholar 

  84. M. Peer Mohamed, M. Lydia Caroline, P. Jayaprakash, Growth, spectral and optical characterization of a novel nonlinear optical organic material: d-Alanine DL-Mandelic acid single crystal. J. Mol. Struct. 1131, 73–78 (2016). https://doi.org/10.1016/j.molstruc.2016.12.026

    Article  CAS  Google Scholar 

  85. H.B. Rodousky, C.W. Carr, M.D. Feit, A.M. Rubenchik, S.G. Demos, Localized dynamics during laser- induced damage in optical materials. Phys. Rev. Lett. 92, 087401–087403 (2004). https://doi.org/10.1103/physrevlett.92.087401

    Article  Google Scholar 

  86. K. Kitamura, D. Xue, Dielectric characterization of the defect concentration in lithium niobate single crystals. Solid State Commun. 122, 537–541 (2002). https://doi.org/10.1016/S0038-1098(02)00180-1

    Article  Google Scholar 

  87. T. Suthan, P.V. Dhanaraj, C.K. Mahadevan, N.P. Rajesh, Growth and characterization of naphthalene single crystals grown by modified vertical Bridgman method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 75, 69–73 (2010). https://doi.org/10.1016/j.saa.2009.09.041

    Article  CAS  Google Scholar 

  88. T. Suthan, N.P. Rajesh, Growth and characterization of organic material 4-nitrobenzaldehyde single crystal using modified vertical Bridgman technique. J. Cryst. Growth 312, 3156–3160 (2010). https://doi.org/10.1016/j.jcrysgro.2010.08.002

    Article  CAS  Google Scholar 

  89. T. Suthan, C.K. Mahadevan, N.P. Rajesh, G. Bhagavannarayana, K.S. Kumar, Growth and characterization of organic material 2-methylamino-5-chlorobenzophenone single crystal by modified vertical Bridgman technique. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 79, 1443 (2011). https://doi.org/10.1016/j.saa.2011.04.084

    Article  CAS  Google Scholar 

  90. C. Muthamizhchelvan, M. Anbuchezhiyana, S. Ponnusamy, Synthesis and characterization of a new organic nonlinear optical crystal: l-Phenylalaninium maleate. Spectrochim. Acta Part A: Mol. Bio Mol. Spectr. 74(4), 917–923 (2009). https://doi.org/10.1016/j.saa.2009.08.035

    Article  CAS  Google Scholar 

  91. G.V. Anuradha, Structural, dielectric properties & activation energy on l-histidine monohydrochloride phosphate—nonlinear optical crystal. Optik 127, 4004–4006 (2016). https://doi.org/10.1016/j.ijleo.2016.01.096

    Article  CAS  Google Scholar 

  92. G. Peramaiyan, S. Kalainathan, M. Nizam Mohideen, R. Mohan, M. Dhavamurthy, Structural, growth and optical characterizations of an organic third-order nonlinear crystal: Guanidinium trichloroacetate. J. Non. Opt. Phys. Mater. (2015). https://doi.org/10.1142/S0218863515500459

    Article  Google Scholar 

  93. J.L. Raj, C.C. Desai, Micro hardness studies of SnI2 and SnI4 single crystals. Bull. Mater. Sci. 5, 453–457 (1983). https://doi.org/10.1007/BF02743924

    Article  Google Scholar 

  94. A.K. Jonscher, Nature 267, 673–679 (1977)

    Article  CAS  Google Scholar 

  95. S. Sanker, P. Vasudevan, S. Gokul Raj, Studies on second harmonic generation efficiency of organic material l-arginine maleate dehydrate. Optik 124, 4155–4158 (2013)

    Article  Google Scholar 

  96. W.A. Batchelor, W.G. Stachowiak, B.G. Stachowiak, J. Tribol. Ind. 44, 13–23 (2004)

    Google Scholar 

  97. P. Smith, The fundamentals of piping design (Gulf Publishing Company, Texas, 2007)

    Google Scholar 

  98. K. Li, X. Wang, D. Xue, A simple method for hardness prediction of transition metal compounds. Mater. Focus 1, 142–148 (2012). https://doi.org/10.1166/mat.2012.1022

    Article  CAS  Google Scholar 

  99. J.L. Raj, C.C. Desai, Micro hardness studies of SnI2 and SnI4 single crystals. Bull. Mater. Sci. 5, 453–457 (1983). https://doi.org/10.1007/BF02743924

    Article  Google Scholar 

  100. K. Gayathri, P. Krishnan, N. Sivakumar, V. Sangeetha, G. Anbalagan, N. Kanagathara, Growth, optical, thermal, dielectric and micro hardness characterization of melaminium bis (trifluoroacetate) trihydrate single crystal. J. Cryst. Growth 389, 30–38 (2014). https://doi.org/10.1016/j.jcrysgro.2013.11.026

    Article  CAS  Google Scholar 

  101. B.W. Mott, Micro indentation hardness testing (Butterworths, London, 1956)

    Google Scholar 

  102. K. Sangwal, Mater. Chem. Phys. 63, 145–152 (2000)

    Article  CAS  Google Scholar 

  103. S. Dhanuskodi, A. Philominal, J. Philip. Mater. Chem. Phys. 139, 1–7 (2013)

    Article  Google Scholar 

  104. E.M. Onitsch, Systematic metallographic and mineralogic structures. Mikroskopia 2, 131–138 (1947)

    Google Scholar 

  105. D. Abila Darling, S.E. Joema, ‘Investigation of structural, mechanical, optical, thermal and in vitro antimicrobial study of l-phenylalaninium formate single crystals. J. Mater. Sci.: Mater. Electron. 32, 9087–9105 (2021). https://doi.org/10.1007/s10854-021-05577-3

    Article  CAS  Google Scholar 

  106. T.T. Perry, S.K. Kurtz, J. Appl. Phys. 39, 3798–3812 (1968)

    Article  Google Scholar 

  107. R. Hanumanthrao, S. Kalainathan, Spectrochim. Acta A 94, 78–83 (2012)

    Article  Google Scholar 

  108. R. Hanumantharao, S. Kalainathan, G. Bhagavannarayana, U. Madhusoodanan, An extensive investigation on nucleation, growth parameters, crystalline perfection, spectroscopy, thermal, optical, microhardness, dielectric and SHG studies on potential NLO crystal—Ammonium Hydrogen l-tartarte. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 103, 388–399 (2013). https://doi.org/10.1016/j.saa.2012.10.044

    Article  CAS  Google Scholar 

  109. R. Thilagavathi, P. Selva Rajan, V. Vasantha Kumari, Growth, optical, thermal and mechanical properties of glycine copper sulphate single crystal. Int. J. Adv. Sci. Tech. Res. 6, 1 (2012)

    Google Scholar 

  110. M. Nageshwari, C.R.T. Kumari, M.L. Caroline, S. Sudha, Growth and characterization of an efficient semi organic single crystal: sodium hydrogen oxalate monohydrate. Chin. J. Phys. 56, 2673–2683 (2018). https://doi.org/10.1016/j.cjph.2018.09.038

    Article  CAS  Google Scholar 

  111. G.Y. Zhou, T. Pal, Z.H. Yang, T. Kar, X.Q. Wang, D. Wang, X.F. Cheng, J. Cryst. Growth 235, 253 (2002)

    Article  Google Scholar 

  112. H. Nakatani, W.R. Bosenberg, L.K. Cheng, C.L. Tang, Laser-induced damage in beta-barium metaborate. Appl. Phys. Let. 53, 2587 (1988). https://doi.org/10.1063/1.100535

    Article  CAS  Google Scholar 

  113. H. Zhang, J. Wang, X. Yin, X. Cheng, Y. Lin, X. Hu, X. Xu, M. Jiang, H. Kong, Crystal Res. Technol. 39, 689 (2004)

    Google Scholar 

  114. B.C. Stuart, A.M. Rubenchik, M.D. Feit, M.D. Perry, B.W. Shore, Laser-Induced damage in dielectrics with nanosecond to subpicosecond pulses. Phys. Rev. Lett. 74, 2248–2251 (1995). https://doi.org/10.1103/PhysRevLett.74.2248

    Article  CAS  Google Scholar 

  115. X. Wang, G. Zhang, Z. Gao, S. Zhang, X. Cheng, X. Dong, Z. Sun, Crystal Growth Des. 9(7), 3251–3259 (2009)

    Article  Google Scholar 

  116. H.M. Shanshoola, M. Yahaya, W.M.M. Yunus, I.Y. Abdullah, Technology 78, 33–38 (2016)

    Google Scholar 

  117. P. Vivek, P. Murugakoothan, Linear and nonlinear optical properties of a new organic NLO l-asparaginium l-tartarate (AST) single crystal. Optik 124, 3510–3513 (2013). https://doi.org/10.1016/j.ijleo.2012.12.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to SAIF, Pondicherry University, Crescent Institute of Science and Technology, Chennai, M.D.T. Hindu College, Tirunelveli and Noorul Islam Centre for Higher Education, Kumarakovil for yielding outstanding instrumentation facilities.

Funding

The authors declare that no funds, grants, or other support were obtained during the research of this script.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the investigate idea and devise. Preparation of the materials, statistics collection and testing were executed by all authors. All authors examined and agreed the final manuscript.

Corresponding author

Correspondence to M. Mary Anne.

Ethics declarations

Conflict of interest

No variance of interest subsists or if such conflict presents, the accurate temperament should be proclaimed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anne, M.M., Sweetlin, M.D. Synthesis and characterization of pure and l-proline doped copper sulphate single crystals. J Mater Sci: Mater Electron 34, 974 (2023). https://doi.org/10.1007/s10854-023-10365-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10365-2

Navigation