Skip to main content
Log in

Polyvinyl chloride-reduced graphene oxide based chemiresistive sensor for sensitive detection of ammonia

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, we present the innovative development of sensitive chemiresistive sensor utilizing a composite material composed of polyvinyl chloride (PVC) and reduced graphene oxide (rGO) for the highly responsive detection of ammonia (NH3) at ambient conditions. Graphene oxide (GO) was meticulously synthesized employing an enhanced version of Hummer’s method, and subsequently, rGO was prepared via thermal reduction from GO. The PVC/rGO composite was synthesized using a precise chemical pathway. The synthesized material was comprehensively characterized using advanced techniques including X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), UV–visible spectroscopy, Raman spectroscopy, atomic force microscopy (AFM), and I–V measurements, unveiling its structural, spectroscopic, morphological, and electrical attributes. The chemiresistive sensor was fabricated through the meticulous drop-casting of PVC/rGO composite onto an economical Cu interdigitated electrode (IDE) pattern. Remarkably, this PVC/rGO-based chemiresistive sensor exhibited superior performance in detecting corrosive NH3. The sensor demonstrated an exceptional response time of 46 s and a recovery time of 88 s, coupled with an impressively low detection limit of 1 ppm, surpassing the Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL). Notably, this sensor displayed a remarkable selectivity towards NH3 at ambient conditions, outperforming its response to other gases. Furthermore, the sensor exhibited outstanding reproducibility, repeatability, linearity, sensitivity, and stability in its response to NH3. This research showcases a groundbreaking advancement in the field of gas sensing technology, offering a highly sensitive and selective chemiresistive sensor for NH3 detection at room temperature (RT). The synergistic combination of PVC and rGO in the composite material, along with the precise fabrication techniques employed, has resulted in a sensor with unparalleled performance characteristics, promising significant implications for real-world applications demanding precise and reliable gas detection capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data will be made available on reasonable request.

References

  1. P. Dhivya, A.K. Prasad, M. Sridharan, J. Ceram. Int. 40, 409–415 (2014). https://doi.org/10.1016/j.ceramint.2013.06.016

    Article  CAS  Google Scholar 

  2. D. Panda, A. Nandi, S.K. Datta, H. Saha, S. Majumdar, J. RSC Advances. 6, 47337–47348 (2016). https://doi.org/10.1039/C6RA06058G

    Article  CAS  ADS  Google Scholar 

  3. N. Ingle, P. Sayyad, M. Deshmukh, G. Bodkhe, M. Mahadik, T. AlGahouari, S. Shirsat, M.D. Shirsat, J Appl. Phy. A (2021). https://doi.org/10.1007/s00339-021-04288-0

    Article  Google Scholar 

  4. C. Zhang, Y. Luo, J. Xu, M. Debliquy, J. Sens. Actuator A Phys. 289, 118–113 (2019). https://doi.org/10.1016/j.sna.2019.02.027

    Article  CAS  Google Scholar 

  5. R. Saad, A. Gamal, M. Zayed, A.M. Ahmed, M. Shaban, M. BinSabt, M. Rabia, H. Hamdy, J. Nanomater. 11, 3087 (2021). https://doi.org/10.3390/nano11113087

    Article  CAS  Google Scholar 

  6. B. Fruhberger, N. Stirling, F. Grillo, S. Ma, D. Ruthevn, R.J. Lad, B.G. Frederick, J. Sens. Actuators B Chem. 76, 226–234 (2001). https://doi.org/10.1016/S0925-4005(01)00572-X

    Article  CAS  Google Scholar 

  7. X. Xie, N. Gao, L. Zhu, M. Hunter, S. Chen, L. Zang, J. Chemosens. 11, 124 (2023). https://doi.org/10.3390/chemosensors11020124

    Article  CAS  Google Scholar 

  8. G.K. Mani, J.B.B. Rayappan, J. Sens. Atuators B: Chem. 183, 459–466 (2013). https://doi.org/10.1016/j.snb.2013.03.132

    Article  CAS  Google Scholar 

  9. H. Bai, G. Shi, J. Sens. 7, 267–307 (2007). https://doi.org/10.3390/s7030267

    Article  CAS  ADS  Google Scholar 

  10. K. Subbaiah, K. Nithin, B.J. Raj, S. Shivanna, Mater. Today: Proc. (2019). https://doi.org/10.1016/j.matpr.2018.10.370

    Article  Google Scholar 

  11. S.M. Shirsat, C.-H. Chiang, G.A. Bodkhe, M.D. Shirsat, M.-L. Tsai, J. Discover Nano. 18, 34 (2023). https://doi.org/10.1186/s11671-023-03813-9

    Article  Google Scholar 

  12. W. Qi, W. Li, Y. Sun, J. Guo, D. Xie, L. Cai, H. Zhu, L. Xiang, T. Ren, J. Nanotechno. 30, 345503 (2019).

    Article  CAS  Google Scholar 

  13. H. Wei, H. Zhang, B. Song, K. Yuan, H. Xiao, Y. Cao, Q. Cao, Int. J. Environ. Res. Public. Health. 20, 4388 (2023). https://doi.org/10.3390/ijerph20054388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. J.N. Kumar, D. Shrinivasa Mayya, M. Savitha, P. Prasad Int, J. Appl. Eng. (2018). https://doi.org/10.5281/zenodo.1481293

    Article  Google Scholar 

  15. H. Rasuli, R. Rasuli, J. of Mater. Sci. 58, 2971–2992 (2023). https://doi.org/10.1007/s10853-023-08183-2

    Article  CAS  ADS  Google Scholar 

  16. M.J. Yoo, H.B. Park, J. Carbon, J. Carbon (2019). https://doi.org/10.1016/j.carbon.2018.10.009

    Article  Google Scholar 

  17. M. Bahri, S.H. Gebre, M.A. Elaguech, F.T. Dajan, M.G. Sendeku, C. Tlili, D. Wan, J. Coord. Chem. Rev. 475, 214910 (2023). https://doi.org/10.1016/j.ccr.2022.214910

    Article  CAS  Google Scholar 

  18. Z. Dehghani, F. Ostovari, S. Sharifi, J. Optik, Optik  (2023). https://doi.org/10.1016/j.ijleo.2023.170551

    Article  Google Scholar 

  19. I. Diédhiou, B. Fall, C. Gaye, M.L. Sall, A.K.D. Diaw, D. Gningue-Sall, M. Fall, N. Raouafi, Inter J. of Mater. Res. 114, 79 (2023). https://doi.org/10.1515/ijmr-2021-8596

    Article  CAS  ADS  Google Scholar 

  20. A. Kausar, I. Ahmad, T. Zhao, M.H. Eisa, O. Aldaghri, M. Gupta, P. Bocchetta, J. Compos. Sci. 7, 108 (2023). https://doi.org/10.3390/jcs7030108

    Article  CAS  Google Scholar 

  21. M.U. Shahid, N.M. Mohamed, A.S. Muhsan, S.N.A. Zaine, M. Khatani, A. Yar, W. Ahmad, M.B. Hussain, A.A. Alothman, M.S.S. Mushab, J. Chemosphere (2023). https://doi.org/10.1016/j.chemosphere.2023.138009

    Article  Google Scholar 

  22. S. Priyadarsini, S. Mohanty, S. Mukherjee, S. Basu, M. Mishra, J. Nanostruct. Chem. 8, 123–137 (2018). https://doi.org/10.1007/s40097-018-0265-6

    Article  CAS  Google Scholar 

  23. A.G. Olabi, M.A. Abdelkareem, T. Wilberforce, E.T. Sayed, J. Renew. Sust Energ. Rev. 135, 110026 (2021). https://doi.org/10.1016/j.rser.2020.110026

    Article  CAS  Google Scholar 

  24. A.G. Bannov, O. Jašek, A.A. Shibaev, L. Zajíčková, J. Procedia Eng. 168, 231 (2016). https://doi.org/10.1016/j.proeng.2016.11.169

    Article  CAS  Google Scholar 

  25. X. Huang, N. Hu, R. Gao, Y. Yu, Y. Wang, Z. Yang, E.S.W. Kong, H. Wei, Y. Zhang, J. of Mate Chem. 22, 22488–22495 (2012). https://doi.org/10.1039/C2JM34340A

    Article  CAS  Google Scholar 

  26. S. Srirattanapibul, P. Nakarungsee, C. Issro, I.-M. Tang, S. Thongmee, J. Mater. Chem. And Phys. 272, 125033 (2021). https://doi.org/10.1016/j.matchemphys.2021.125033

    Article  CAS  Google Scholar 

  27. P.-G. Su, X.-H. Liu, J. Sens. (2019). https://doi.org/10.3390/s20010046

    Article  Google Scholar 

  28. K. Wu, M. Debliquy, C. Zhang, J. Chem. Eng. 444, 136449 (2022). https://doi.org/10.1016/j.cej.2022.136449

    Article  CAS  Google Scholar 

  29. MD, L. Fernández-Ramos, L. Capitan-Vallvey, S. Pastrana-Martínez, F. Morales-Torres, Maldonado-Hodar, J. Sens. Actuators B: Chem. 368, 132103 (2022). https://doi.org/10.1016/j.snb.2022.132103

    Article  CAS  Google Scholar 

  30. R.S. Andre, F.M. Shimizu, C.M. Miyazaki, A.R. Manzani Jr., S.J.L. Ribeiro, O.N. Oliveira, L.H.C. Mattoso, D.S. Correa, J. Sens. Actuators B: Chem. (2017). https://doi.org/10.1016/j.snb.2016.07.099

    Article  Google Scholar 

  31. R.N. Dhanawade, N.S. Pawar, M.A. Chougule, G.M. Hingangavkar, Y.M. Jadhav, T.M. Nimbalkar, Y.H. Navale, G.T. Chavan, C.-W. Jeon, V.B. Patil, J. Mater. Sci: Mater. Electron. 34, 781 (2023). https://doi.org/10.1007/s10854-023-10181-8

    Article  CAS  Google Scholar 

  32. Y. Guan, C. Wang, H. Yu, Z. Zou, Y. Zhou, G. Cao, J. Yao, J. Mater. Sci. Energy Technol. (2020). https://doi.org/10.1016/j.mset.2020.10.011

    Article  Google Scholar 

  33. S. Wang, B. Liu, Z. Duan, Q. Zhao, Y. Zhang, G. Xie, Y. Jiang, S. Li, H. Tai, J. Sens. Actuators B: Chem. (2021). https://doi.org/10.1016/j.snb.2020.128923

    Article  Google Scholar 

  34. C. Liu, H. Tai, P. Zhang, Z. Yuan, X. Du, G. Xie, Y. Jiang, J. Sens. and Actuators B: Chem. 261, 587–597 (2018). https://doi.org/10.1016/j.snb.2017.12.022

    Article  CAS  Google Scholar 

  35. Y. Grohens, J. Sacristan, L. Hamon, H. Reinecke, C. Mijangos, J. Gue Polym. 42, 6419–6423 (2001). https://doi.org/10.1016/S0032-3861(01)00171-9

    Article  CAS  Google Scholar 

  36. L. Coltro, J.B. Pitta, E. Madaleno, J. Polymer Testing, J. Polym. Test. (2013). https://doi.org/10.1016/j.polymertesting.2012.11.009

    Article  Google Scholar 

  37. S. Mallakpour, A. Nezamzadeh Ezhieh, J. Polym. Environ. 26, 2813–2824 (2018). https://doi.org/10.1007/s10924-017-1170-7

    Article  CAS  Google Scholar 

  38. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, J. ACS nano. 4, 4806–4814 (2010). https://doi.org/10.1021/nn1006368

    Article  CAS  Google Scholar 

  39. T. Al-Gahouari, P. Sayyad, N. Ingle, M. Mahadik, M. Farea, H. Mohammed, S. Shirsat, M. Shirsat, J. Appl. Phys. A 127, 326 (2021). https://doi.org/10.1007/s00339-021-04481-1

    Article  CAS  ADS  Google Scholar 

  40. A. Zhou, T. Yu, X. Liang, S. Yin, FlatChem, FlatChem (2023). https://doi.org/10.1016/j.flatc.2023.100487

    Article  Google Scholar 

  41. S.N. Alam, N. Sharma, L. Kumar, Graphene  (2017). https://doi.org/10.4236/graphene.2017.61001

    Article  Google Scholar 

  42. M.A.D. Aluiz, S. Assis, Karolyne, da K.S. Silva, Maysa, C.S. Araujo, Deivson, M.C. Sales, Ferreira,Colloids Surf. A Physicochem Eng. Asp. 599, 124837 (2020). https://doi.org/10.1016/j.colsurfa.2020.124837

    Article  CAS  Google Scholar 

  43. A.E.F. Oliveira, G.B. Braga, C.R.T. Tarley, A.C. Pereira, J. Mater. Sci. 53, 12005 (2018). https://doi.org/10.1007/s10853-018-2473-3

    Article  CAS  ADS  Google Scholar 

  44. G. Surekha, K.V. Krishnaiah, N. Ravi, R.P. Suvarna, J. Phys. : Conf. Ser. 1495, 012012 (2020).

    CAS  Google Scholar 

  45. M.A.D. Silva, M.G.A. Vieira, A.C.G. Maçumoto, M.M. Beppu, J. Polym. Test. 30, 478–484 (2011). https://doi.org/10.1016/j.polymertesting.2011.03.008

    Article  CAS  Google Scholar 

  46. K. Loh, Q. Bao, M. Eda, chhowalla, Nat. Chem. 2, 1015–1024 (2010). https://doi.org/10.1038/nchem.907

    Article  CAS  PubMed  Google Scholar 

  47. S.M. Ibrahim, K. Noorsal, J. AIP Publishing LLC,28–29, (2017), http://pi.lib.uchicago.edu/1001/cat/bib/11389398

  48. M. Hasan, R. Kumar, M. Barakat, M. Lee, RSC Adv. 5, 14393–14399 (2015). https://doi.org/10.1039/C4RA16043F

    Article  CAS  ADS  Google Scholar 

  49. H.Y. Mohammed, M.A. Farea, P.W. Sayyad, N.N. Ingle, M.M. TAl-Gahouari, G.A. Mahadik, S.M. Bodkhe, M.D. Shirsat, Shirsat, J. Sci. Adv. Mater. Dev. 7, 100391 (2022). https://doi.org/10.1016/j.jsamd.2021.08.004

    Article  CAS  Google Scholar 

  50. L. Liu, S. Su, K. Xu, H. Li, M. Qing, S. Hu, Y. Wang, J. Xiang, Fuel (2019). https://doi.org/10.1016/j.fuel.2019.115798

    Article  Google Scholar 

  51. N. Hidayah, W.-W. Liu, C.-W. Lai, N.Z. Noriman, C.-S. Khe, U. Hashim, H.C. Lee, J AIP Conf. Proc. 1892, 150002, (2017), https://doi.org/10.1063/1.5005764

  52. P. Jia, M. Zhang, L. Hu, R. Wang, C. Sun, Y. Zhou, J. Polym. (2017). https://doi.org/10.3390/polym9110621

    Article  Google Scholar 

  53. S. Rajendran, T. Uma, J. Mater. Letters. 44, 208–214 (2000). https://doi.org/10.1016/S0167-577X(00)00029-X

    Article  CAS  Google Scholar 

  54. N. Sharma, V. Sharma, Y. Jain, M. Kumari, R. Gupta, S.K. Sharma, K. Sachdev, J. Macromol. Symp. (2017). https://doi.org/10.1002/masy.201700006

    Article  Google Scholar 

  55. H.C. Lee, W.-W. Liu, S.-P. Chai, A.R. Mohamed, A. Aziz, C.S. Khe, N.M.S. Hidayah, U. Hashim, J. RSC adv. 7, 15644 (2017). https://doi.org/10.1039/C7RA00392G

    Article  CAS  ADS  Google Scholar 

  56. L. Guo, Y.-W. Hao, P.-L. Li, J.-F. Song, R.-Z. Yang, X.-Y. Fu, S.-Y. Xie, J. Zhao, Y.-L. Zhang, J. Sci. Rep. 8, 4918 (2018). https://doi.org/10.1038/s41598-018-23091-1

    Article  CAS  ADS  Google Scholar 

  57. P. Ranjan, P. Tiwary, A.K. Chakraborty, R. Mahapatra, A.D. Thakur, J. Mater. Sci: Mater. Electron. 29, 15946–15956 (2018). https://doi.org/10.1007/s10854-018-9680-1

    Article  CAS  Google Scholar 

  58. N.M. Rosas-Laverde, A.I. Pruna, D. Busquets-Mataix, J. Nanomat. (2020). https://doi.org/10.3390/nano10061188

    Article  Google Scholar 

  59. E. Abdel-Fattah, A. Alharthi, T. Fahmy, J. Appl. Phys. A 125, 475 (2019). https://doi.org/10.1007/s00339-019-2770-y

    Article  CAS  ADS  Google Scholar 

  60. A.F.A. Naim, H. AlFannakh, S. Arafat, S. Ibrahim, J. Sci. Eng. Compo Mater. 27, 55–64 (2019). https://doi.org/10.1515/secm-2020-0003

    Article  CAS  Google Scholar 

  61. V. Solodovnichenko, V. Polyboyarov, A. hdanok, A.B. Arbuzov, E.S. Zapevalova, Y.G. Kryazhev, V.A. Likholobov, J. Procedia Eng. 152, 747–752 (2016). https://doi.org/10.1016/j.proeng.2016.07.684

    Article  CAS  Google Scholar 

  62. M.A. Farea, H.Y. Mohammed, N.N. Ingle, T.A. Gahouari, M.M. Mahadik, G.A. Bodkhe, S.M. Shirsat, M.D. Shirsat, J. Appl. Phys. A 127, 681 (2021). https://doi.org/10.1007/s00339-021-04837-7

    Article  CAS  ADS  Google Scholar 

  63. P.W. Sayyad, N.N. Ingle, T. Al-Gahouari, M.M. Mahadik, G.A. Bodkhe, S.M. Shirsat, M.D. Shirsat, Appl. Phys. A 127, 167 (2021). https://doi.org/10.1007/s00339-021-04314-1

    Article  CAS  ADS  Google Scholar 

  64. V. Singh, S. Mohan, G. Singh, P. Pandey, R. Prakash, J. Sens. and Actuators B: Chem. 132, 99–106 (2008). https://doi.org/10.1016/j.snb.2008.01.007

    Article  CAS  Google Scholar 

  65. N. Cao, Y. Zhang, J.  Nanomater. (2015). https://doi.org/10.1155/2015/168125

    Article  Google Scholar 

  66. S. Chengen He, S. Qiu, Q. Sun, G. Zhang, S. Lin, X. Lei, Y. Han, Yang, Energy Environ. Mater. 1, 88–95 (2018). https://doi.org/10.1002/eem2.12007

    Article  CAS  Google Scholar 

  67. A. Lipatov, A. Varezhnikov, P. Wilson, V. Sysoev, A. Kolmakov, A. Sinitskii, Nanoscale. 5, 5426–5434 (2013). https://doi.org/10.1039/C3NR00747B

    Article  CAS  PubMed  ADS  Google Scholar 

  68. Z. Guo, B. Wang, X. Wang, Y. Li, S. Gai, Y. Wu, X.L. Cheng, J. RSC adva. 9, 37518–37525 (2019). https://doi.org/10.1039/C9RA08065A

    Article  CAS  ADS  Google Scholar 

  69. X. Li, B. Wang, X. Wang, Z. Chen, C. He, Z. Yu, Y. Wu, J. Nanoscale Res. Lett. 10, 373 (2015). https://doi.org/10.1186/s11671-015-1072-3

    Article  CAS  ADS  Google Scholar 

  70. B. Wang, X. Wang, X. Li, Z. Guo, X. Zhou, Y. Wu, J. RSC Adv. 8, 41280–41287 (2018). https://doi.org/10.1039/C8RA07509C

    Article  CAS  ADS  Google Scholar 

  71. A. Akbar, M. Das, D. Sarkar, J. Sens. Actuators A: Phys. 310, 112071 (2020). https://doi.org/10.1016/j.sna.2020.112071

    Article  CAS  Google Scholar 

  72. Y. Zhang, J. Zhang, Y. Jiang, Z. Duan, B. Liu, Q. Zhao, S. Wang, Z. Yuan, H. Tai, J. Sens. Actuators B: Chem. (2020). https://doi.org/10.1016/j.snb.2020.128293

    Article  Google Scholar 

  73. X. Chen, X. Chen, X. Ding, X. Yu, X. Yu, J. Mater. Chem. Phys. 226, 378–386 (2019). https://doi.org/10.1016/j.matchemphys.2019.01.061

    Article  CAS  Google Scholar 

  74. S. Cai, L. Chen, J. Zhang, Y. Ke, X. Fu, H. Yang, H. Li, Y. Long, X. Liu, J. Sens. Actuators B: Chem. (2020). https://doi.org/10.1016/j.snb.2020.128476

    Article  Google Scholar 

  75. S.S. Ali, A. Pauly, J. Brunet, C. Varenne, A.L. Ndiaye, J. Sens. Actuators B: Chem. 320, 128364 (2020). https://doi.org/10.1016/j.snb.2020.128364

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their sincere thanks to Inter-University Accelerator Center (IUAC), New Delhi, India (UFR no. 69330), UGC—DAE CSR, Indore (Project No. CRS/2021-22/ 01/456 dated March 30, 2022), DST—SERB, New Delhi (Project No. EEQ/2017/000645), UGC-SAP Programme (F.530/16/DRS-I/2016 (SAP-II) Dt.16-04-2016), DST-FIST (Project No. SR/FST/PSI-210/2016(c) dtd. 16/12/2016) and Rashtriya Uchachatar Shiksha Abhiyan (RUSA), Government of Maharashtra for providing financial support. Sumita S. Gaikwad gratefully acknowledges to the Dr. Babasaheb Ambedkar Research and Training Institute fellowship for doctor of philosophy as financial assistance, Mayuri A. More gratefully acknowledges to the Chhatrapati Shahu Maharaj Research, Training and Human Development Institute fellowship for doctor of philosophy as financial assistance, Abhaysinh S. Khune gratefully acknowledges to the Dr. Babasaheb Ambedkar Research and Training Institute fellowship for doctor of philosophy as financial assistance, Mahendra D, Shirsat gratefully acknowledges the Slovak Academic Information Agency (SAIA) and Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic, for the sanction of scholarship under the framework of National Scholarship Program (NSP) of Slovak Republic.

Funding

This work was supported by  Inter-University Accelerator Centre (Grant Number:  69330).

Author information

Authors and Affiliations

Authors

Contributions

SSG: Experimental work, data analysis and drafting of manuscript, MSM: Formal analysis, ASK: Data analysis, HYM : Data analysis, drafting of the manuscript, MLT : Manuscript editing, TH : Manuscript editing, MDS : Planning of experiments, Data analysis, drafting and editing of the manuscript.

Corresponding author

Correspondence to Mahendra D. Shirsat.

Ethics declarations

Competing interests

The authors declares no competing interests.

Ethical approval

The authors declares that they have complied with all ethical standards.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaikwad, S.S., More, M.S., Khune, A.S. et al. Polyvinyl chloride-reduced graphene oxide based chemiresistive sensor for sensitive detection of ammonia. J Mater Sci: Mater Electron 35, 216 (2024). https://doi.org/10.1007/s10854-024-11923-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-11923-y

Navigation