Skip to main content
Log in

Selective Hg2+ sensor: rGO-blended PEDOT:PSS conducting polymer OFET

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The detection of water pollutants employing organic field-effect transistor (OFET) sensor requires a stable performance in an aqueous media. It is an essential condition of any sensor to present reliable measurements. Some organic-conducting polymers deteriorate almost immediately in the presence of an aqueous medium. However, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has proven its stability in both air and aqueous mediums. Nevertheless, due to inadequate structural and chemical properties of the PEDOT:PSS, it persists major obstacles and inhibits its performance in practical applications. These shortcomings can be overcome with the combination of carbon nanomaterials. Therefore, the present study deals with the effect of inclusion of reduced graphene oxide (rGO) into PEDOT:PSS, and it resulted in the enhancement of structural, morphological, and electrical properties of the PEDOT:PSS/rGO nanocomposite. The organic field-effect transistor (OFET) was fabricated with PEDOT:PSS/rGO nanocomposite to detect heavy-metal ions. This makes a highly sensitive and selective sensor platform for detecting Hg2+ in the linear concentration range of 1–60 nM. The presented OFET sensor manifests high sensitivity and selectivity to Hg2+ with a low detection limit of 2.4 nM. The variety of metal ions tested, i.e., Hg2+, Cd2+, Pb2+, Cu2+, Zn2+, Na+, and Fe3+, to investigate the selectivity. The sensor exhibits stable performance in an aqueous medium for the detection of Hg2+ in the presence of DI water. Moreover, the OFET sensor responded within 2–3 s after incubation of Hg2+ ions’ solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G.F. Nordberg, B.A. Fowler, M. Nordberg, Handbook on the Toxicology of Metals (Academic press, Cambridge, 2014).

    Google Scholar 

  2. G. Genchi, M.S. Sinicropi, A. Carocci, G. Lauria, A. Catalano, Int. J. Environ. Res. Public Health 14, 74 (2017)

    Article  Google Scholar 

  3. R. A. Bernhoft, J. Environ. Public Health 2012, 1–31 (2012)

  4. A. Sigel and H. Sigel, Metal Ions in Biological Systems: Volume 32: Interactions of Metal Ions with Nucleotides: Nucleic Acids, and Their Constituents (CRC Press, 1996)

  5. K.M. Rice, E.M. Walker Jr., M. Wu, C. Gillette, E.R. Blough, J. Prev. Med. Public Health 47, 74 (2014)

    Article  Google Scholar 

  6. J.-D. Park, W. Zheng, J. Prev. Med. Public Health 45, 344 (2012)

    Article  Google Scholar 

  7. C.T. Driscoll, R.P. Mason, H.M. Chan, D.J. Jacob, N. Pirrone, Environ. Sci. Technol. 47, 4967 (2013)

    Article  ADS  Google Scholar 

  8. A. Spyropoulou, Y. G. Lazarou, and C. Laspidou, in Multidisciplinary Digital Publishing Institute Proceedings 2018, p. 668 (2018)

  9. Y.H. Lee, M. Jang, M.Y. Lee, O.Y. Kweon, J.H. Oh, Chem 3, 724 (2017)

    Article  Google Scholar 

  10. M. Watanabe, T. Miyazaki, T. Matsushima, J. Matsuda, C.-T. Chein, M. Shibahara, C. Adachi, S.-S. Sun, T.J. Chow, T. Ishihara, RSC Adv. 8, 13259 (2018)

    Article  ADS  Google Scholar 

  11. N. Ingle, P. Sayyad, G. Bodkhe, M. Mahadik, A.-G. Theeazen, S. Shirsat, M.D. Shirsat, Appl. Phys. A 126, 1 (2020)

    Article  Google Scholar 

  12. N. Ingle, S. Mane, P. Sayyad, G. Bodkhe, T. Al-Gahouari, M. Mahadik, S. Shirsat, M.D. Shirsat, Front. Mater. 7, 93 (2020)

    Article  ADS  Google Scholar 

  13. T. Minami, T. Minamiki, S. Tokito, Jpn. J. Appl. Phys. 55, 04EL02 (2016)

    Article  Google Scholar 

  14. T. Minami, Y. Sasaki, T. Minamiki, P. Koutnik, P. Anzenbacher, S. Tokito, Chem. Commun. 51, 17666 (2015)

    Article  Google Scholar 

  15. C. Rullyani, M. Shellaiah, M. Ramesh, H.-C. Lin, C.-W. Chu, Org. Electron. 69, 275 (2019)

    Article  Google Scholar 

  16. O. Knopfmacher, M.L. Hammock, A.L. Appleton, G. Schwartz, J. Mei, T. Lei, J. Pei, Z. Bao, Nat. Commun. 5, 2954 (2014)

    Article  ADS  Google Scholar 

  17. F. Tanvir, A. Yaqub, S. Tanvir, R. An, W.A. Anderson, Materials 12, 1533 (2019)

    Article  ADS  Google Scholar 

  18. S. Bayindir, J. Photochem. Photobiol. A 372, 235 (2019)

    Article  Google Scholar 

  19. A. Moutcine, A. Chtaini, Sens. Bio-Sens. Res. 17, 30 (2018)

    Article  Google Scholar 

  20. Kindly provide the complete details for the reference 21 (n.d.).

  21. B. L. Rivas, B. F. Urbano, and J. Sánchez, Front. Chem. 6, (2018).

  22. H. Wen, H. Cai, Y. Du, X. Dai, Y. Sun, J. Ni, J. Li, D. Zhang, J. Zhang, Appl. Phys. A 123, 14 (2017)

    Article  ADS  Google Scholar 

  23. F. Hermerschmidt, F. Mathies, V.R. Schröder, C. Rehermann, N.Z. Morales, E.L. Unger, E.J. List-Kratochvil, Mater. Horizons 7, 1773–1781 (2020)

    Article  Google Scholar 

  24. M.U. Khan, G. Hassan, M.A. Raza, J. Bae, Appl. Phys. A 124, 726 (2018)

    Article  ADS  Google Scholar 

  25. P.W. Sayyad, S.S. Khan, N.N. Ingle, G.A. Bodkhe, T. Al-Gahouari, M.M. Mahadik, S.M. Shirsat, M.D. Shirsat, Appl. Phys. A 126, 1 (2020)

    Article  Google Scholar 

  26. P.W. Sayyad, N.N. Ingle, T. Al-Gahouari, M.M. Mahadik, G.A. Bodkhe, S.M. Shirsat, M.D. Shirsat, Chem. Phys. Lett. 761, 138056 (2020)

    Article  Google Scholar 

  27. Y. Seekaew, S. Lokavee, D. Phokharatkul, A. Wisitsoraat, T. Kerdcharoen, C. Wongchoosuk, Org. Electron. 15, 2971 (2014)

    Article  Google Scholar 

  28. T. Al-Gahouari, G. Bodkhe, P. Sayyad, N. Ingle, M. Mahadik, S.M. Shirsat, M. Deshmukh, N. Musahwar, M. Shirsat, Front. Mater. 7, 68 (2020)

    Article  ADS  Google Scholar 

  29. M. Mahadik, H. Patil, G. Bodkhe, N. Ingle, P. Sayyad, T. Al-Gahaouri, S. Shirsat, M.D. Shirsat, Front. Mater. 7, 81 (2020)

    Article  ADS  Google Scholar 

  30. M. Hakimi, A. Salehi, F.A. Boroumand, Fabrication and characterization of an ammonia gas sensor based on PEDOT-PSS with N-doped graphene quantum dots dopant. IEEE Sens. J. 16, 6149–6154 (2016)

    Article  ADS  Google Scholar 

  31. F. Abd-Wahab, A. Guthoos, H. Farhana, W. Salim, W.W. Amani, Biosensors 9, 36 (2019)

    Article  Google Scholar 

  32. M. Zhang, W. Yuan, B. Yao, C. Li, G. Shi, ACS Appl. Mater. Interfaces. 6, 3587 (2014)

    Article  Google Scholar 

  33. B.J. Kim, M.S. Kang, V.H. Pham, T.V. Cuong, E.J. Kim, J.S. Chung, S.H. Hur, J.H. Cho, J. Mater. Chem. 21, 13068 (2011)

    Article  Google Scholar 

  34. C.W. Lee, J.M. Suh, H.W. Jang, Front. Chem. 7, 708 (2019)

    Article  ADS  Google Scholar 

  35. P. W. Sayyad, Z. A. Shaikh, N. N. Ingle, T. Al-Gahouari, M. M. Mahadik, G. A. Bodkhe, S. M. Shirsat, and M. D. Shirsat, in Journal of Physics: Conference Series (IOP Publishing, 2020), vol. 1644, p. 012001.

  36. J. Li, J. Liu, C. Gao, J. Zhang, H. Sun, Int. J. Photoenergy 2009, (2009).

  37. I.A. Latif, S.H. Merza, Nanosci. Nanotech. 6, 24 (2016)

    Google Scholar 

  38. B. Rajagopalan, J.S. Chung, Nanosc. Res. Lett. 9, 535 (2014)

    Article  Google Scholar 

  39. H. Saleem, M. Haneef, H.Y. Abbasi, Mater. Chem. Phys. 204, 1 (2018)

    Article  Google Scholar 

  40. D. Dastan, Appl. Phys. A 123, 699 (2017)

    Article  ADS  Google Scholar 

  41. W.-D. Zhou, D. Dastan, J. Li, X.-T. Yin, Q. Wang, Nanomaterials 10, 785 (2020)

    Article  Google Scholar 

  42. G.-L. Tan, D. Tang, D. Dastan, A. Jafari, J. P. Silva, X.-T. Yin, Mater. Sci. Semicond. Process. 122, 105506 (2020)

  43. P.W. Sayyad, N.N. Ingle, G.A. Bodkhe, M.A. Deshmukh, H.K. Patil, S.M. Shirsat, F. Singh, M.D. Shirsat, Radiat. Effects and Defects Solids 175, 1 (2020)

    Article  Google Scholar 

  44. S.S. Kulkarni, G.A. Bodkhe, P.W. Sayyad, M.A. Deshmukh, S.S. Hussaini, M.D. Shirsat, International J. Nanosci. 19, 2050009 (2020)

    Article  ADS  Google Scholar 

  45. A. Jafari, K. Tahani, D. Dastan, S. Asgary, Z. Shi, X.-T. Yin, W.-D. Zhou, H. Garmestani, Ş Ţălu, Surf. Interfaces 18, 100463 (2020)

    Article  Google Scholar 

  46. D. Dastan, N. Chaure, M. Kartha, J. Mater. Sci.: Mater. Electron. 28, 7784 (2017)

    Google Scholar 

  47. D. Dastan, S.L. Panahi, N.B. Chaure, J. Mater. Sci. Mater. Electron. 27, 12291 (2016)

    Article  Google Scholar 

  48. D. Dastan, P.U. Londhe, N.B. Chaure, J. Mater. Sci. Mater. Electron. 25, 3473 (2014)

    Article  Google Scholar 

  49. P. C. Yadav, M. A. Deshmukh, H. K. Patil, G. A. Bodkhe, P. W. Sayyad, N. N. Ingle, and M. D. Shirsat, in AIP Conference Proceedings (AIP Publishing LLC, 2018), p. 100058.

  50. Kindly provide the complete details for the reference 51 (n.d.).

  51. P.C. Mahakul, K. Sa, B. Das, B. Subramaniam, S. Saha, B. Moharana, J. Raiguru, S. Dash, J. Mukherjee, P. Mahanandia, J. Mater. Sci. 52, 5696 (2017)

    Article  ADS  Google Scholar 

  52. B. Xu, S.-A. Gopalan, A.-I. Gopalan, N. Muthuchamy, K.-P. Lee, J.-S. Lee, Y. Jiang, S.-W. Lee, S.-W. Kim, J.-S. Kim, Sci. Rep. 7, 45079 (2017)

    Article  ADS  Google Scholar 

  53. S. Deng, V. Berry, Mater. Today 19, 197 (2016)

    Article  Google Scholar 

  54. D. Yoo, J. Kim, J.H. Kim, Nano Res. 7, 717 (2014)

    Article  Google Scholar 

  55. G.A. Bodkhe, M.A. Deshmukh, H.K. Patil, S.M. Shirsat, V. Srihari, K.K. Pandey, G. Panchal, D.M. Phase, A. Mulchandani, M.D. Shirsat, J. Phys. D Appl. Phys. 52, 335105 (2019)

    Article  Google Scholar 

  56. S.A. Rutledge, A.S. Helmy, J. Appl. Phys. 114, 133708 (2013)

    Article  ADS  Google Scholar 

  57. A. Hasani, H. Sharifi Dehsari, M. Asghari Lafmejani, A. Salehi, F. Afshar Taromi, K. Asadi, Phys. Status Solidi (RRL) Rapid Res. Lett. 12, 1870317 (2018)

    Article  ADS  Google Scholar 

  58. N. Rolland, J.F. Franco-Gonzalez, R. Volpi, M. Linares, I.V. Zozoulenko, Phys. Rev. Mater. 2, 045605 (2018)

    Article  Google Scholar 

  59. G. Horowitz, M.E. Hajlaoui, Synth. Met. 122, 185 (2001)

    Article  Google Scholar 

  60. D. Dastan, A. Banpurkar, J. Mater. Sci. Mater. Electron. 28, 3851 (2017)

    Article  Google Scholar 

  61. M. Fathinezhad, M. AbbasiTarighat, D. Dastan, Environmental Nanotechnology. Monit. Manag. 14, 100307 (2020)

    Google Scholar 

  62. D. Dastan, S.W. Gosavi, N.B. Chaure, Macromol. Symp. 347, 81 (2015)

    Article  Google Scholar 

  63. I. Shtepliuk, N.M. Caffrey, T. Iakimov, V. Khranovskyy, I.A. Abrikosov, R. Yakimova, Sci Rep 7, 3934 (2017)

    Article  ADS  Google Scholar 

  64. K. Schmoltner, J. Kofler, A. Klug, E.J. List-Kratochvil, Adv. Mater. 25, 6895 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their sincere thanks to DST-SERB, New Delhi (Project No. EEQ/2017/000645), Rashtriya Uchachatar Shiksha Abhiyan (RUSA), Government of Maharashtra, UGC—DAE CSR (RRCAT), Indore (Project No. CSR-IC-BL66/CRS- 183/2016-17/847), Inter University Accelerator Center (IUAC), New Delhi, India (UFR no. 62320), UGC-SAP Programme (F.530/16/DRS-I/2016 (SAP-II) Dt.16-04-2016) and DST-FIST (Project No. No. SR/FST/PSI-210/2016(C) dtd. 16/12/2016) for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra D. Shirsat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 533 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayyad, P.W., Ingle, N.N., Al-Gahouari, T. et al. Selective Hg2+ sensor: rGO-blended PEDOT:PSS conducting polymer OFET. Appl. Phys. A 127, 167 (2021). https://doi.org/10.1007/s00339-021-04314-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04314-1

Keywords

Navigation