Skip to main content
Log in

Carbon monoxide sensor based on polypyrrole–graphene oxide composite: a cost-effective approach

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Carbon monoxide (CO) is one of the highly toxic gases which is extremely harmful to people when it crosses OSHA (Occupational Safety and Health Administration) PEL (Permeable exposure level). Therefore, search for new material which is highly sensitive and selective to carbon monoxide is a continuous process. In the present investigation, the cost-effective carbon monoxide sensor was developed on the interdigitated copper electrode based on PPy-GO composite materials. The PPy-GO composite was synthesized successfully using the in situ polymerization process. X-ray diffraction, Raman spectroscopy, FTIR spectroscopy, UV–Vis spectroscopy, and atomic force microscope were utilized to characterize the PPy-GO composite and to confirm the high interaction between GO sheets and PPy chains. The sensitivity of the sensor for various concentrations of carbon monoxide (CO) gas was investigated at room temperature. The sensor demonstrated quick response and recovery time to CO with excellent repeatability. Moreover, the sensor also exhibited long-term stability and better selectivity to carbon monoxide. Further, in the current study, the material properties and sensing mechanisms have been studied in detail. The findings of the study showed that PPy-GO composite is a promising material and a sensor device developed using interdigitated copper electrode on copper clad is a cost-effective approach for detection of CO.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. B. Sharma, Environmental pollution: Its effects on life and its remedies. Biochem Cell Arch 16, 57–60 (2016)

    Google Scholar 

  2. I. Cunha, S. Moreira, M.M. Santos, Review on hazardous and noxious substances (HNS) involved in marine spill incidents-an online database. J. Hazard. Mater. 285, 509–516 (2015)

    Article  Google Scholar 

  3. M.A. Farea, H.Y. Mohammed, S.M. Shirsat et al., Hazardous gases sensors based on conducting polymer composites: review. Chem Phys Lett 776, 138703 (2021). https://doi.org/10.1016/j.cplett.2021.138703

    Article  Google Scholar 

  4. M. Goldstein, Carbon monoxide poisoning. J Emerg Nurs 34, 538–542 (2008). https://doi.org/10.1016/j.jen.2007.11.014

    Article  Google Scholar 

  5. Anon, Carbon monoxide. Natl Saf News 113, 73–76 (1976). https://doi.org/10.1201/9781315098180-11

    Article  Google Scholar 

  6. X.T. Yin, X.M. Guo, Selectivity and sensitivity of Pd-loaded and Fe-doped SnO2 sensor for CO detection. Sens Actuat B Chem 200, 213–218 (2014). https://doi.org/10.1016/j.snb.2014.04.026

    Article  Google Scholar 

  7. S. Javanmardi, S. Nasresfahani, M.H. Sheikhi, Facile synthesis of PdO/SnO2/CuO nanocomposite with enhanced carbon monoxide gas sensing performance at low operating temperature. Mater Res Bull (2019). https://doi.org/10.1016/j.materresbull.2019.110496

    Article  Google Scholar 

  8. L. Gildo-Ortiz, H. Guillén-Bonilla, V.M. Rodríguez-Betancourtt et al., Key processing of porous and fibrous LaCoO3 nanostructures for successful CO and propane sensing. Ceram Int 44, 15402–15410 (2018). https://doi.org/10.1016/j.ceramint.2018.05.192

    Article  Google Scholar 

  9. H. Bai, G. Shi, Gas sensors based on conducting polymers. Sensors 7, 267–307 (2007)

    Article  ADS  Google Scholar 

  10. A. Joshi, S.A. Gangal, S.K. Gupta, Ammonia sensing properties of polypyrrole thin films at room temperature. Sensors Actuators, B Chem 156, 938–942 (2011). https://doi.org/10.1016/j.snb.2011.03.009

    Article  Google Scholar 

  11. C. Xu, J. Sun, L. Gao, Synthesis of novel hierarchical graphene/polypyrrole nanosheet composites and their superior electrochemical performance. J Mater Chem 21, 11253–11258 (2011). https://doi.org/10.1039/c1jm11275a

    Article  Google Scholar 

  12. X. Shi, S. Zheng, Z.S. Wu, X. Bao, Recent advances of graphene-based materials for high-performance and new-concept supercapacitors. J. Energy Chem. 27, 25–42 (2018)

    Article  Google Scholar 

  13. M.O. Yanik, E.A. Yigit, Y.E. Akansu, E. Sahmetlioglu, Magnetic conductive polymer-graphene nanocomposites based supercapacitors for energy storage. Energy 138, 883–889 (2017). https://doi.org/10.1016/j.energy.2017.07.022

    Article  Google Scholar 

  14. D.C. Marcano, D.V. Kosynkin, J.M. Berlin et al., Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010). https://doi.org/10.1021/nn1006368

    Article  Google Scholar 

  15. J. Chen, B. Yao, C. Li, G. Shi, An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon N Y 64, 225–229 (2013). https://doi.org/10.1016/j.carbon.2013.07.055

    Article  Google Scholar 

  16. Bahraeian S, Abron K, Pourjafarian F, Majid RA (2013) Study on synthesis of polypyrrole via chemical polymerization method. In: Advanced Materials Research. pp 707–710

  17. L. Bueno, T.R.L.C. Paixão, A copper interdigitated electrode and chemometrical tools used for the discrimination of the adulteration of ethanol fuel with water. Talanta 87, 210–215 (2011). https://doi.org/10.1016/j.talanta.2011.09.064

    Article  Google Scholar 

  18. T.R.L.C. Paixão, M. Bertotti, Fabrication of disposable voltammetric electronic tongues by using Prussian Blue films electrodeposited onto CD-R gold surfaces and recognition of milk adulteration. Sens Actuat B Chem 137, 266–273 (2009). https://doi.org/10.1016/j.snb.2008.10.045

    Article  Google Scholar 

  19. R. Moosaei, M. Sharif, A. Ramezannezhad, Enhancement of tensile, electrical and thermal properties of epoxy nanocomposites through chemical hybridization of polypyrrole and graphene oxide. Polym Test 60, 173–186 (2017). https://doi.org/10.1016/j.polymertesting.2017.03.022

    Article  Google Scholar 

  20. N.A. Salahuddin, H.A. Daly, R.G. El Sharkawy, B.T. Nasr, Synthesis and efficacy of PPy/CS/GO nanocomposites for adsorption of ponceau 4R dye. Polym (Guildf) 146, 291–303 (2018). https://doi.org/10.1016/j.polymer.2018.04.053

    Article  Google Scholar 

  21. R.M.N.M. Rathnayake, H.W.M.A.C. Wijayasinghe, H.M.T.G.A. Pitawala et al., Synthesis of graphene oxide and reduced graphene oxide by needle platy natural vein graphite. Appl Surf Sci 393, 309–315 (2017). https://doi.org/10.1016/j.apsusc.2016.10.008

    Article  ADS  Google Scholar 

  22. C. Nethravathi, J.T. Rajamathi, N. Ravishankar et al., Graphite oxide-intercalated anionic clay and its decomposition to graphene-inorganic material nanocomposites. Langmuir 24, 8240–8244 (2008). https://doi.org/10.1021/la8000027

    Article  Google Scholar 

  23. K. Amirazodi, M. Sharif, M. Bahrani, Polypyrrole doped graphene oxide reinforced epoxy nanocomposite with advanced properties for coatings of mild steel. J Polym Res (2019). https://doi.org/10.1007/s10965-019-1905-3

    Article  Google Scholar 

  24. S. Yang, C. Shen, Y. Liang et al., Graphene nanosheets-polypyrrole hybrid material as a highly active catalyst support for formic acid electro-oxidation. Nanoscale 3, 3277–3284 (2011). https://doi.org/10.1039/c1nr10371g

    Article  ADS  Google Scholar 

  25. A. Singh, A. Chandra, Graphite oxide/polypyrrole composite electrodes for achieving high energy density supercapacitors. J Appl Electrochem 43, 773–782 (2013). https://doi.org/10.1007/s10800-013-0573-y

    Article  Google Scholar 

  26. A. Yussuf, M. Al-Saleh, S. Al-Enezi, G. Abraham, Synthesis and characterization of conductive polypyrrole: the influence of the oxidants and monomer on the electrical, thermal, and morphological properties. Int J Polym Sci (2018). https://doi.org/10.1155/2018/4191747

    Article  Google Scholar 

  27. K.V. Harpale, S.R. Bansode, M.A. More, One-pot synthesis, characterization, and field emission investigations of composites of polypyrrole with graphene oxide, reduced graphene oxide, and graphene nanoribbons. J Appl Polym Sci (2017). https://doi.org/10.1002/app.45170

    Article  Google Scholar 

  28. N.M. Rosas-Laverde, A.I. Pruna, D. Busquets-Mataix, Graphene oxide-polypyrrole coating for functional ceramics. Nanomaterials 10, 1–13 (2020). https://doi.org/10.3390/nano10061188

    Article  Google Scholar 

  29. S. Kulandaivalu, N. Suhaimi, Y. Sulaiman, Unveiling high specific energy supercapacitor from layer-by-layer assembled polypyrrole/graphene oxide|polypyrrole/manganese oxide electrode material. Sci Rep (2019). https://doi.org/10.1038/s41598-019-41203-3

    Article  Google Scholar 

  30. S.F. Besharat, M. Manteghian, M. Abdollahi, Study of polypyrrole/graphene oxide nanocomposite structural and morphological changes including porosity. Polym Sci Ser B 60, 664–674 (2018). https://doi.org/10.1134/S1560090418050032

    Article  Google Scholar 

  31. C. Bora, S.K. Dolui, Fabrication of polypyrrole/graphene oxide nanocomposites by liquid/liquid interfacial polymerization and evaluation of their optical, electrical and electrochemical properties. Polymer (Guildf) 53, 923–932 (2012). https://doi.org/10.1016/j.polymer.2011.12.054

    Article  Google Scholar 

  32. R. Mohammadkhani, M. Ramezanzadeh, S. Saadatmandi, B. Ramezanzadeh, Designing a dual-functional epoxy composite system with self-healing/barrier anti-corrosion performance using graphene oxide nano-scale platforms decorated with zinc doped-conductive polypyrrole nanoparticles with great environmental stability and non-tox. Chem Eng J (2020). https://doi.org/10.1016/j.cej.2019.122819

    Article  Google Scholar 

  33. A. Imani, G. Farzi, A. Ltaief, Facile synthesis and characterization of polypyrrole-multiwalled carbon nanotubes by in situ oxidative polymerization. Int Nano Lett (2013). https://doi.org/10.1186/2228-5326-3-52

    Article  Google Scholar 

  34. P.W. Sayyad, S.S. Khan, N.N. Ingle et al., Chemiresistive SO2 sensor: graphene oxide (GO) anchored poly(3,4-ethylenedioxythiophene):poly(4styrenesulfonate) (PEDOT:PSS). Appl Phys A Mater Sci Process (2020). https://doi.org/10.1007/s00339-020-04053-9

    Article  Google Scholar 

  35. R. Memarzadeh, H.B. Noh, S. Javadpour et al., Carbon monoxide sensor based on a B2HDDT-doped PEDOT:PSS layer. Bull Korean Chem Soc 34, 2291–2296 (2013). https://doi.org/10.5012/bkcs.2013.34.8.2291

    Article  Google Scholar 

  36. X. Tang, D. Lahem, J.P. Raskin et al., A fast and room-temperature operation ammonia sensor based on compound of graphene with polypyrrole. IEEE Sens J 18, 9088–9096 (2018). https://doi.org/10.1109/JSEN.2018.2869203

    Article  ADS  Google Scholar 

  37. Frederick RC, Haldane JS, Hartridge H (1931) Carbon monoxide poisoning: Its detection, and the determination of percentage saturation in blood, by means of the hartridge reversion spectroscope. In: The Analyst. pp 561–572

  38. S. Nasresfahani, Z. Zargarpour, M.H. Sheikhi, S.F. Nami Ana, Improvement of the carbon monoxide gas sensing properties of polyaniline in the presence of gold nanoparticles at room temperature. Synth Met (2020). https://doi.org/10.1016/j.synthmet.2020.116404

    Article  Google Scholar 

  39. S. Absalan, S. Nasresfahani, M.H. Sheikhi, High-performance carbon monoxide gas sensor based on palladium/tin oxide/porous graphitic carbon nitride nanocomposite. J Alloys Compd (2019). https://doi.org/10.1016/j.jallcom.2019.04.187

    Article  Google Scholar 

  40. Wanna Y, Srisukhumbowornchai N, Tuantranont A, et al (2006) The effect of carbon nanotube dispersion on CO gas sensing characteristics of polyaniline gas sensor. In: Journal of Nanoscience and Nanotechnology. pp 3893–3896

  41. S. Zhuiykov, Carbon monoxide detection at low temperatures by semiconductor sensor with nanostructured Au-doped CoOOH films. Sensors Actuators, B Chem 129, 431–441 (2008). https://doi.org/10.1016/j.snb.2007.08.046

    Article  Google Scholar 

  42. T. Sen, N.G. Shimpi, S. Mishra, Room temperature CO sensing by polyaniline/Co3O4 nanocomposite. J Appl Polym Sci (2016). https://doi.org/10.1002/app.44115

    Article  Google Scholar 

  43. W. Zeng, Y. Li, B. Miao et al., Recognition of carbon monoxide with SnO2/Ti thick-film sensor and its gas-sensing mechanism. Sensors Actuators, B Chem 191, 1–8 (2014). https://doi.org/10.1016/j.snb.2013.09.092

    Article  Google Scholar 

  44. A. Roy, A. Ray, P. Sadhukhan et al., Polyaniline-multiwalled carbon nanotube (PANI-MWCNT): Room temperature resistive carbon monoxide (CO) sensor. Synth Met 245, 182–189 (2018). https://doi.org/10.1016/j.synthmet.2018.08.024

    Article  Google Scholar 

  45. S. Radhakrishnan, S. Paul, Conducting polypyrrole modified with ferrocene for applications in carbon monoxide sensors. Sens Actuat B Chem 125, 60–65 (2007). https://doi.org/10.1016/j.snb.2007.01.038

    Article  Google Scholar 

  46. S. Paul, F. Amalraj, S. Radhakrishnan, CO sensor based on polypyrrole functionalized with iron porphyrin. Synth Met 159, 1019–1023 (2009). https://doi.org/10.1016/j.synthmet.2009.01.018

    Article  Google Scholar 

  47. D. Zhang, C. Jiang, J. Liu, Y. Cao, Carbon monoxide gas sensing at room temperature using copper oxide-decorated graphene hybrid nanocomposite prepared by layer-by-layer self-assembly. Sensors Actuators, B Chem 247, 875–882 (2017). https://doi.org/10.1016/j.snb.2017.03.108

    Article  Google Scholar 

  48. L. Utari, N.L.W. Septiani et al., Wearable carbon monoxide sensors based on hybrid graphene/ZnO nanocomposites. IEEE Access 8, 49169–49179 (2020). https://doi.org/10.1109/ACCESS.2020.2976841

    Article  Google Scholar 

  49. Sayed S, R Fath El Bab AM, Abd El-Moneim A, et al High Performance Carbon Monoxide Gas Sensor based on Graphene View project Establishing the micro fabrication center of excellence View project High Performance Carbon Monoxide Gas Sensor based on Graphene

  50. R.A. Naikoo, R. Tomar, Fabrication of a novel Zeolite-X/Reduced graphene oxide/Polypyrrole nanocomposite and its role in sensitive detection of CO. Mater Chem Phys 211, 225–233 (2018). https://doi.org/10.1016/J.MATCHEMPHYS.2018.02.021

    Article  Google Scholar 

  51. X. Tang, N. Reckinger, O. Poncelet et al., Damage evaluation in graphene underlying atomic layer deposition dielectrics. Sci Rep (2015). https://doi.org/10.1038/srep13523

    Article  Google Scholar 

  52. M. Wang, D. Zhang, A. Yang et al., Fabrication of polypyrrole/graphene oxide hybrid nanocomposite for ultrasensitive humidity sensing with unprecedented sensitivity. J Mater Sci Mater Electron 30, 4967–4976 (2019). https://doi.org/10.1007/s10854-019-00793-4

    Article  Google Scholar 

  53. L.W. De, H.M. Chang, R.J. Wu, Applied novel sensing material graphene/polypyrrole for humidity sensor. Sensors Actuators, B Chem 181, 326–331 (2013). https://doi.org/10.1016/j.snb.2013.02.017

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their sincere thanks to DST-SERB, New Delhi (Project No. EEQ/2017/000645), Rashtria Uchachatar Shiksha Abhiyan (RUSA), Government of Maharashtra, UGC—DAE CSR (RRCAT), Indore (Project No. CSR-IC-BL66/CRS- 183/2016-17/847), Inter-University Accelerator Centre (IUAC), New Delhi, India (UFR no. 62320), UGC-SAP Programme (F.530/16/DRS-I/2016 (SAP-II) Dt.16-04-2016) and DST-FIST (Project No. No. SR/FST/PSI-210/2016(C) dtd. 16/12/2016) for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra D. Shirsat.

Ethics declarations

Conflict of interest

The author declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farea, M.A., Mohammed, H.Y., sayyad, P.W. et al. Carbon monoxide sensor based on polypyrrole–graphene oxide composite: a cost-effective approach. Appl. Phys. A 127, 681 (2021). https://doi.org/10.1007/s00339-021-04837-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04837-7

Keywords

Navigation