Skip to main content
Log in

Synthesis and characterisation of TIO2/FE2O3 green composites co-doped on go and to study its photocatalytic degradation on methylene blue and Carbol fuchsin dyes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The environmentally friendly synthesis of GO-TiO2/Fe2O3 nanocomposites were synthesized using Moringa oleifera seed extract as a reducing agent. GO (graphene oxide) was prepared with the Hummer’s method and TiO2 and Fe2O3 were co-doped onto the graphene surface through ultrasonication. Structural characteristics were determined via X-ray diffraction (XRD), surface morphology analyzed with field emission scanning electron microscopy (FESEM) and High-Resolution Transmission Electron Microscopy (HRTEM), and vibrational modes identified using Raman spectroscopy. Optical properties were assessed using UV–VIS and Photoluminescence techniques, while the presence of elements was confirmed with Fourier Transform Infrared Spectroscopy (FTIR) and energy dispersive spectroscopy (EDS). Porosity and surface area were determined through nitrogen adsorption and desorption via BET studies. The NC Fe3 nanocomposite featured a crystalline size of 20 nm, a high surface area of 75 m2/g, a 2.75 eV bandgap energy, and an 8.6 nm particle size distribution. The d-spacing values from HRTEM and XRD analyses matched. Notably, under UV light for 90 min, the photocatalytic degradation of methylene blue (MB) reached 85%, exhibiting pseudo-first-order kinetics with a rate constant of 0.009 min−1 and a correlation coefficient of 0.9853. Similarly, the photocatalytic degradation of Carbol Fuchsin (CF) achieved 90% under UV light for 90 min, with pseudo-first-order kinetics characterized by a rate constant of 0.01064365 min−1 and a correlation coefficient of 0.9923.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Data from the results of this study are provided in the article.

References

  1. A. Toqeer, I. Saba, Y. Khwaja, N.M. Butt, P. Arshad, Emerging nanotechnology-based methods for water purification: a review. Desalin. Water Treat. 52(22/24), 4089–4101 (2014). https://doi.org/10.1080/19443994.2013.801789

    Article  CAS  Google Scholar 

  2. U. Alam, A. Khan, D. Ali, D. Bahnemann, M. Muneer, Comparative photocatalytic activity of sol–gel derived rare earth metal (La, Nd, Sm and Dy)-doped ZnO photocatalysts for degradation of dyes. RSC Adv. 8(31), 17582–17594 (2018). https://doi.org/10.1039/C8RA01638K

    Article  CAS  Google Scholar 

  3. R.S. Castro, L. Caetano, G. Ferreira, P.M. Padilha, M.J. Saeki, L.F. Zara, M.A.U. Martines, G.R. Castro, Banana peel applied to the solid phase extraction of copper and lead from river water: preconcentration of metal ions with a fruit waste. Ind. Eng. Chem. Res. 50(6), 3446–3451 (2011). https://doi.org/10.1021/ie101499e

    Article  CAS  Google Scholar 

  4. B. Gao, B. Liu, T. Chen, Q. Yue, Effect of aging period on the characteristics and coagulation behavior of polyferric chloride and polyferric chloride–polyamine composite coagulant for synthetic dying wastewater treatment. J. Hazard. Mater. 187(1–3), 413–420 (2011). https://doi.org/10.1016/j.jhazmat.2011.01.044

    Article  CAS  Google Scholar 

  5. R.N. Perumal, V. Athikesavan, Structural and electrical properties of lanthanide-doped Bi0.5(Na0.80K0.20)0.5TiO3–SrZrO3 piezoelectric ceramics for energy-storage applications. J. Mater. Sci. 31, 4092–4105 (2020). https://doi.org/10.1007/s10854-020-02956-0

    Article  CAS  Google Scholar 

  6. A. Szyguła, E. Guibal, M.A. Palacín, M. Ruiz, A.M. Sastre, Removal of an anionic dye (Acid Blue 92) by coagulation–flocculation using chitosan. J. Environ. Manag. 90(10), 2979–2986 (2009). https://doi.org/10.1016/j.jenvman.2009.04.002

    Article  CAS  Google Scholar 

  7. M.A.L. Grace, R. Sambasivam, R.N. Perumal et al., Enhanced synthesis, structure, and ferroelectric properties of Nb-modified 1–x[Bi0.5(Na0.4K0.1) (Ti1−xNbx)]O3−x(Ba0.7Sr0.3)TiO3 ceramics for energy storage applications. J. Aust. Ceram. Soc. 56, 157–165 (2020). https://doi.org/10.1007/s41779-019-00441-4

    Article  CAS  Google Scholar 

  8. F. AlMubaddal, K. AlRumaihi, A. Ajbar, Performance optimization of coagulation/flocculation in the treatment of wastewater from a polyvinyl chloride plant. J. Hazard. Mater. 161(1), 431–438 (2009). https://doi.org/10.1016/j.jhazmat.2008.03.121

    Article  CAS  Google Scholar 

  9. V. Athikesavan, E. Ranjith Kumar, J. Suryakanth, Evaluation of the structural and electrical properties of perovskite NKN-LN ceramics for energy storage applications. New J. Chem. 46(42), 20433–20444 (2022)

    Article  CAS  Google Scholar 

  10. V. Athikesavan, Structural and electrical properties of Pb(Mg1/3Nb2/3)O3-Pb(Yb1/2Nb1/2)O3-PbTiO3 ternary ceramic for energy storage application. Ferroelectr. Lett. Sect.Sect. 49(4–6), 104–110 (2022)

    Article  CAS  Google Scholar 

  11. K. Shivaji, E.S. Monica, A. Devadoss, D.D. Kirubakaran, C.R. Dhas, S.M. Jain, S. Pachaimuthu, Synthesizing green photocatalyst using plant leaf extract for water pollutant treatment. Green Photocatal. (2020). https://doi.org/10.1007/978-3-030-15608-4_2

    Article  Google Scholar 

  12. R. Rashid, I. Shafiq, P. Akhter, M.J. Iqbal, M. Hussain, A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method. Environ. Sci. Pollut. Res. 28, 9050–9066 (2021). https://doi.org/10.1007/s11356-021-12395-x

    Article  CAS  Google Scholar 

  13. T. Ahmed, S. Imdad, K. Yaldram, N.M. Butt, A. Pervez, Emerging nanotechnology-based methods for water purification: a review. Desalin. Water Treat. 52(22–24), 4089–4101 (2014). https://doi.org/10.1080/19443994.2013.801789

    Article  CAS  Google Scholar 

  14. M. Nasrollahzadeh, M. Atarod, B. Jaleh, M. Gandomirouzbahani, In situ green synthesis of Ag nanoparticles on graphene oxide/TiO2 nanocomposite and their catalytic activity for the reduction of 4-nitrophenol, congo red and methylene blue. Ceram. Int. 42(7), 8587–8596 (2016). https://doi.org/10.1016/j.ceramint.2016.02.088

    Article  CAS  Google Scholar 

  15. A. Karuppanan, P.B. Bhargav, P. Ramasamy, Synthesis and characterization of K0.5Bi0.5TiO3–BaTiO3 piezoelectric ceramics for energy storage applications. J. Mater. Sci. 32, 717–726 (2021)

    CAS  Google Scholar 

  16. B. Paulchamy, G. Arthi, B.D. Lignesh, A simple approach to stepwise synthesis of graphene oxide nanomaterial. J. Nanomed. Nanotechnol. 6, 253 (2015)

    Google Scholar 

  17. A. Benhammada, D. Trache, M. Kesraoui, A.F. Tarchoun, S. Chelouche, A. Mezroua, Synthesis and characterization of α-Fe2O3 nanoparticles from different precursors and their catalytic effect on the thermal decomposition of nitrocellulose. Thermochim. Acta 686, 178570 (2020). https://doi.org/10.1016/j.tca.2020.178570

    Article  CAS  Google Scholar 

  18. N. El-Shafai, M.E. El-Khouly, M. El-Kemary, M. Ramadan, I. Eldesoukey, M. Masoud, Graphene oxide decorated with zinc oxide nanoflower, silver and titanium dioxide nanoparticles: fabrication, characterization, DNA interaction, and antibacterial activity. RSC Adv. 9(7), 3704–3714 (2019). https://doi.org/10.1039/C8RA09788G

    Article  CAS  Google Scholar 

  19. R. Bouchareb, K. Derbal, A. Benalia, Optimization of active coagulant agent extraction method from Moringa Oleifera seeds for municipal wastewater treatment. Water Sci. Technol. 84(2), 393–403 (2021). https://doi.org/10.2166/wst.2021.234

    Article  CAS  Google Scholar 

  20. D. Liang, C. Cui, H. Hu, Y. Wang, S. Xu, B. Ying, P. Li, B. Lu, H. Shen, One-step hydrothermal synthesis of anatase TiO2/reduced graphene oxide nanocomposites photocatalytic activity. J. Alloys Compd. 582, 236–240 (2014). https://doi.org/10.1016/j.jallcom.2013.08.062

    Article  CAS  Google Scholar 

  21. H.M. Yadav, J.S. Kim, Solvothermal synthesis of anatase TiO2-graphene oxide nanocomposites and their photocatalytic performance. J. Alloy Compds. 688, 123–129 (2016). https://doi.org/10.1016/j.jallcom.2016.07.133

    Article  CAS  Google Scholar 

  22. N.R. Khalid, Z. Hong, E. Ahmed, Y. Zhang, H. Chan, M. Ahmad, Synergistic effects of Fe and graphene on photocatalytic activity enhancement of TiO2 under visible light. Appl. Surf. Sci. 258(15), 5827–5834 (2012). https://doi.org/10.1016/j.apsusc.2012.02.110

    Article  CAS  Google Scholar 

  23. T.Y. Lin, D.H. Chen, One-step green synthesis of arginine-capped iron oxide/reduced graphene oxide nanocomposite and its use for acid dye removal. RSC Adv. 4(56), 29357–29364 (2014). https://doi.org/10.1039/c4ra03505d

    Article  CAS  Google Scholar 

  24. M.A. Kumar, B. Abebe, H.P. Nagaswarupa, H.A. Murthy, C.R. Ravikumar, F.K. Sabir, Enhanced photocatalytic and electrochemical performance of TiO2-Fe2O3 nanocomposite: its applications in dye decolorization and as supercapacitors. Sci. Rep. 10(1), 1249 (2020). https://doi.org/10.1038/s41598-020-58110-7

    Article  CAS  Google Scholar 

  25. A.A. Isari, A. Payan, M. Fattahi, S. Jorfi, B. Kakavandi, Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO2 anchored on reduced graphene oxide (Fe-TiO2/rGO): characterization and feasibility, mechanism and pathway studies. Appl. Surf. Sci. 462, 549–564 (2018). https://doi.org/10.1016/j.apsusc.2018.08.133

    Article  CAS  Google Scholar 

  26. A.M. Athikesavan, S. Bhuvana, Investigations on the electronic parameters of (1–x)Bi0.5(Na0.80K0.20)0.5TiO3-xLiNbO3 ceramic composite for piezoelectric sensor applications. Int. J. Mod. Phys. B 37(31), 2350280 (2023)

    Article  CAS  Google Scholar 

  27. R.N. Perumal, V. Athikesavan, P. Nair, Influence of lead titanate additive on the structural and electrical properties of Na0.5Bi0.5TiO3-SrTiO3 piezoelectric ceramics. Ceram. Int. 44(11), 13259–13266 (2018)

    Article  CAS  Google Scholar 

  28. S. Manu, M.A. Khadar, Non-uniform distribution of dopant iron ions in TiO2 nanocrystals probed by X-ray diffraction, Raman scattering, photoluminescence and photocatalysis. J. Mater. Chem. C 3(8), 1846–1853 (2015). https://doi.org/10.1039/c4tc02362e

    Article  CAS  Google Scholar 

  29. A. Muthuvel, M. Jothibas, C. Manoharan, Synthesis of copper oxide nanoparticles by chemical and biogenic methods: photocatalytic degradation and in vitro antioxidant activity. Nanotechnol. Environ. Eng. 5, 1–19 (2020). https://doi.org/10.1007/s41204-020-00078-w

    Article  CAS  Google Scholar 

  30. H. Liu, X. Dong, G. Li, X. Su, Z. Zhu, Synthesis of C, Ag co-modified TiO2 photocatalyst and its application in waste water purification. Appl. Surf. Sci. 271, 276–283 (2013). https://doi.org/10.1016/j.apsusc.2013.01.181

    Article  CAS  Google Scholar 

  31. S. Noor, S. Sajjad, S.A.K. Leghari, M. Long, Energy harvesting for electrochemical OER and solar photocatalysis via dual functional GO/TiO2-NiO nanocomposite. J. Clean. Prod. 277, 123280 (2020). https://doi.org/10.1016/j.jclepro.2020.123280

    Article  CAS  Google Scholar 

  32. R.N. Perumal, Influence of lanthanides (Ln = La, Nd, and Y) in [Ba0.95Ln0.05] [Zr0.25Ti0.75]O3 lead-free piezoelectric solid solutions. Ferroelectrics 555(1), 88–100 (2020). https://doi.org/10.1080/00150193.2019.1691386

    Article  CAS  Google Scholar 

  33. M. Behpour, P. Shirazi, M. Rahbar, Immobilization of the Fe2O3/TiO2 photocatalyst on carbon fiber cloth for the degradation of a textile dye under visible light irradiation. React. Kinet. Mech. Catal. 127, 1073–1085 (2019). https://doi.org/10.1007/s11144-019-01581-1

    Article  CAS  Google Scholar 

  34. S. Razak, M.A. Nawi, K. Haitham, Fabrication, characterization and application of a reusable immobilized TiO2–PANI photocatalyst plate for the removal of reactive red 4 dye. Appl. Surf. Sci. 319, 90–98 (2014). https://doi.org/10.1016/j.apsusc.2014.07.049

    Article  CAS  Google Scholar 

  35. R.N. Perumal, Investigations on electrical and energy storage behaviour of PZN-PT, PMN-PT, PZN–PMN-PT piezoelectric solid solutions. J. Mater. Sci. 30, 902–913 (2019)

    CAS  Google Scholar 

  36. A. Fouda, S.E.D. Hassan, E. Saied, M.F. Hamza, Photocatalytic degradation of real textile and tannery effluent using biosynthesized magnesium oxide nanoparticles (MgO-NPs), heavy metal adsorption, phytotoxicity, and antimicrobial activity. J. Environ. Chem. Eng. 9(4), 105346 (2021). https://doi.org/10.1016/j.jece.2021.105346

    Article  CAS  Google Scholar 

  37. O.F.S. Khasawneh, P. Palaniandy, M. Ahmadipour, H. Mohammadi, M.R.B. Hamdan, Removal of acetaminophen using Fe2O3-TiO2 nanocomposites by photocatalysis under simulated solar irradiation: optimization study. J. Environ. Chem. Eng. 9(1), 104921 (2021). https://doi.org/10.1016/j.jece.2020.104921

    Article  CAS  Google Scholar 

  38. D. Komaraiah, E. Radha, N. Kalarikkal, J. Sivakumar, M.R. Reddy, R. Sayanna, Structural, optical and photoluminescence studies of sol-gel synthesized pure and iron doped TiO2 photocatalysts. Ceram. Int. 45(18), 25060–25068 (2019). https://doi.org/10.1016/j.ceramint.2019.03.170

    Article  CAS  Google Scholar 

  39. Z. Thammavongsy, I.P. Mercer, J.Y. Yang, Promoting proton coupled electron transfer in redox catalysts through molecular design. Chem. Commun. 55(70), 10342–10358 (2019). https://doi.org/10.1039/c9cc05139b

    Article  CAS  Google Scholar 

  40. R.N. Perumal, Studies on 0.95Bi0.5 (Na0.40K0.10) TiO3-0.05 (Ba0.7Sr0.3) TiO3 ceramics for piezoelectric applications under different sintering temperature. Ferroelectrics 540(1), 65–71 (2019)

    Article  CAS  Google Scholar 

  41. M.M. Khan, R. Siwach, S. Kumar, A.N. Alhazaa, Role of Fe doping in tuning photocatalytic and photoelectrochemical properties of TiO2 for photodegradation of methylene blue. Opt. Laser Technol. 118, 170–178 (2019). https://doi.org/10.1016/j.optlastec.2019.05.012

    Article  CAS  Google Scholar 

  42. M.M. Khan, S. Kumar, A.N. Alhazaa, M.A. Al-Gawati, Modifications in structural, morphological, optical and photocatalytic properties of ZnO: Mn nanoparticles by sol-gel protocol. Mater. Sci. Semicond. Process. 87, 134–141 (2018). https://doi.org/10.1016/j.mssp.2018.07.016

    Article  CAS  Google Scholar 

  43. A. Iqbal, A. Mahmood, T.M. Khan, E. Ahmed, Structural and optical properties of Cr doped ZnO crystalline thin films deposited by reactive electron beam evaporation technique. Prog. Nat. Sci. 23(1), 64–69 (2013). https://doi.org/10.1016/j.pnsc.2013.01.010

    Article  Google Scholar 

  44. D. Channei, B. Inceesungvorn, N. Wetchakun, S. Ukritnukun, A. Nattestad, J. Chen, S.J.S.R. Phanichphant, Photocatalytic degradation of methyl orange by CeO2 and Fe–doped CeO2 films under visible light irradiation. Sci. Rep. 4(1), 5757 (2014). https://doi.org/10.1038/srep05757

    Article  CAS  Google Scholar 

  45. A. Raji, K.N. Pandiyaraj, V. Kandavelu, D. Vasu, D. Saravanan, Efficiency evaluation of the photocatalytic degradation of telmisartan anti-hypertensive drug with Fenton, photo-Fenton and recyclable TiO2 heterogeneous catalyst. React. Kinet. Mech. Catal. 130, 1141–1154 (2020). https://doi.org/10.1007/s11144-020-01806-8

    Article  CAS  Google Scholar 

  46. M.G. Goudarzi, M. Bagherzadeh, F. Taheri, A. Rostami-Vartooni, Preparation and characterization of magnetic zirconium oxide nanocomposite as a catalyst for reduction of methylene blue. SN Appl. Sci. 2, 1–8 (2020). https://doi.org/10.1007/s42452-021-04287-z

    Article  CAS  Google Scholar 

  47. M. El Haddad, Removal of Basic Fuchsin dye from water using mussel shell biomass waste as an adsorbent: equilibrium, kinetics, and thermodynamics. J. Taibah Univ. Sci. 10(5), 664–674 (2016). https://doi.org/10.1016/j.jtusci.2015.08.007

    Article  Google Scholar 

  48. S. Zinatloo-Ajabshir, M.S. Morassaei, M. Salavati-Niasari, Eco-friendly synthesis of Nd2Sn2O7–based nanostructure materials using grape juice as green fuel as photocatalyst for the degradation of erythrosine. Compos. B 167, 643–653 (2019)

    Article  CAS  Google Scholar 

  49. S. Zinatloo-Ajabshir, M.S. Morassaei, O. Amiri, M. Salavati-Niasari, Green synthesis of dysprosium stannate nanoparticles using Ficus carica extract as photocatalyst for the degradation of organic pollutants under visible irradiation. Ceram. Int. 46(5), 6095–6107 (2020)

    Article  CAS  Google Scholar 

  50. S. Yuvaraj, A.C. Fernandez, M. Sundararajan, C.S. Dash, P.J.C. Sakthivel, Hydrothermal synthesis of ZnO–CdS nanocomposites: structural, optical and electrical behavior. Ceram. Int. 46(1), 391–402 (2020)

    Article  CAS  Google Scholar 

  51. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Facile route to synthesize zirconium dioxide (ZrO2) nanostructures: structural, optical and photocatalytic studies. J. Mol. Liq. 216, 545–551 (2016)

    Article  CAS  Google Scholar 

  52. P. Sakthivel, R.J. Ramalingam, D. Pradeepa, S. Rathika, C.S. Dash, K. Bhuvaneswari, M. Sundararajan, P.S. Subudhi, H. Al-Lohedan, Preparation and characterization of Mg doped ZnAI2O4Spinel nanoparticles. J. Nanosci. Nanotechnol. 21(11), 5659–5665 (2021)

    Article  CAS  Google Scholar 

  53. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Preparation of magnetically retrievable CoFe2O4@ SiO2@ Dy2Ce2O7 nanocomposites as novel photocatalyst for highly efficient degradation of organic contaminants. Compos. B 174, 106930 (2019)

    Article  CAS  Google Scholar 

  54. S. Zinatloo-Ajabshir, S.A. Heidari-Asil, M. Salavati-Niasari, Recyclable magnetic ZnCo2O4-based ceramic nanostructure materials fabricated by simple sonochemical route for effective sunlight-driven photocatalytic degradation of organic pollution. Ceram. Int. 47(7), 8959–8972 (2021)

    Article  CAS  Google Scholar 

  55. S. Zinatloo-Ajabshir, S. Mortazavi-Derazkola, M. Salavati-Niasari, Sonochemical synthesis, characterization and photodegradation of organic pollutant over Nd2O3 nanostructures prepared via a new simple route. Sep. Purif. Technol. 178, 138–146 (2017)

    Article  CAS  Google Scholar 

  56. S. Zinatloo-Ajabshir, M.S. Morassaei, O. Amiri, M. Salavati-Niasari, L.K. Foong, Nd2Sn2O7 nanostructures: green synthesis and characterization using date palm extract, a potential electrochemical hydrogen storage material. Ceram. Int. 46(11), 17186–17196 (2020)

    Article  CAS  Google Scholar 

  57. S. Moshtaghi, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Nanocrystalline barium stannate: facile morphology-controlled preparation, characterization and investigation of optical and photocatalytic properties. J. Mater. Sci. 27, 834–842 (2016)

    CAS  Google Scholar 

  58. S. Zinatloo-Ajabshir, S. Mortazavi-Derazkola, M. Salavati-Niasari, Preparation, characterization and photocatalytic degradation of methyl violet pollutant of holmium oxide nanostructures prepared through a facile precipitation method. J. Mol. Liq. 231, 306–313 (2017)

    Article  CAS  Google Scholar 

  59. S. Zinatloo-Ajabshir, S.A. Heidari-Asil, M. Salavati-Niasari, Simple and eco-friendly synthesis of recoverable zinc cobalt oxide-based ceramic nanostructure as high-performance photocatalyst for enhanced photocatalytic removal of organic contamination under solar light. Sep. Purif. Technol. 267, 118667 (2021)

    Article  CAS  Google Scholar 

  60. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Facile synthesis of nanocrystalline neodymium zirconate for highly efficient photodegradation of organic dyes. J. Mol. Liq. 243, 219–226 (2017)

    Article  CAS  Google Scholar 

  61. K. Mahdavi, S. Zinatloo-Ajabshir, Q.A. Yousif, M. Salavati-Niasari, Enhanced photocatalytic degradation of toxic contaminants using Dy2O3-SiO2 ceramic nanostructured materials fabricated by a new, simple and rapid sonochemical approach. Ultrason. Sonochem. 82, 105892 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Mrs. SS: Conceptualization, Formal analysis, Writing—original draft. Dr. MR: Supervision. Dr. VR: Visualization.

Corresponding author

Correspondence to M. Rajkumar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saranya, S., Rajkumar, M. & Rajendran, V. Synthesis and characterisation of TIO2/FE2O3 green composites co-doped on go and to study its photocatalytic degradation on methylene blue and Carbol fuchsin dyes. J Mater Sci: Mater Electron 34, 2298 (2023). https://doi.org/10.1007/s10854-023-11675-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11675-1

Navigation