Skip to main content
Log in

Efficiency evaluation of the photocatalytic degradation of telmisartan anti-hypertensive drug with Fenton, photo-Fenton and recyclable TiO2 heterogeneous catalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The photocatalytic degradation of telmisartan (TN), an anti-hypertensive drug was studied in aqueous media using different catalysts (Fenton, photo-Fenton and Titania (TiO2)) and different atmospheric conditions (air, oxygen (O2), air/hydrogen peroxide (air/H2O2), Oxygen/hydrogen peroxide O2/H2O2). In addition, the degradation experiments were also carried out using telmisartan based commercial tablets. The concentration of telmisartan during the degradation process was monitored by UV–Vis spectrophotometer. It has been found that O2/H2O2 atmospheric condition and into the presence of TiO2 shows higher degradation rate. The degradation was followed by pseudo-first order kinetics. The effect of various operating parameters such as concentration of telmisartan, dosage of the catalyst, pH and nature of irradiation was systematically studied. The mineralization trend of telmisartan was followed by TOC (total organic carbon) content and it was observed that complete mineralization could be achieved within a period of 3 h. The telmisartan metabolites or by-products during the degradation were analyzed and identified by GC–MS technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tijani JO, Fatoba OO (2013) Water Air Soil Pollut 224:1770–1778

    Google Scholar 

  2. Boxall ABA et al (2012) Environ Health Perspect 20:1221–1229

    Google Scholar 

  3. Petrie B, Barden R, Kasprzyk Hordern B (2015) Water Res 72:3–27

    CAS  PubMed  Google Scholar 

  4. Yang Y, Ok YS, Kim KH, Tsang YF (2017) Sci Total Environ 596:303–320

    PubMed  Google Scholar 

  5. Li WC (2014) Environ Pollut 187:193–201

    CAS  PubMed  Google Scholar 

  6. Li N, Tian Y, Zhao J, Zhang J, Zuo W, Kong L, Cui H (2018) Chem Eng J 352:412–422

    CAS  Google Scholar 

  7. Uslu MO, Jasim S, Arvai A, Bewtra J, Biswas N (2013) Ozone Sci Eng 35:249–262

    CAS  Google Scholar 

  8. Shamsuddin N, Das DB, Starov VM (2015) Chem Eng J 276:331–339

    CAS  Google Scholar 

  9. Elmolla ES, Chaudhuri M (2010) Desalination 256:43–47

    CAS  Google Scholar 

  10. Kim I, Yamashita N, Tanaka H (2009) Chemosphere 77:518–525

    CAS  PubMed  Google Scholar 

  11. Ikehata K, Naghashkar NJ, El-Din MG (2006) Ozone Sci Eng 28:353–414

    CAS  Google Scholar 

  12. Huber MM, Canonica S, Park GY, VonGunten U (2003) Environ Sci Technol 37:1016–1024

    CAS  PubMed  Google Scholar 

  13. Trovo AG, Nogueira RPF, Aguera A, Sirtori C, Fernandez-Alba AR (2009) Chemosphere 77:1292–1298

    CAS  PubMed  Google Scholar 

  14. Peraz Moya M, Graells M, Castells G, Amigo J, Ortega E, Buhigas G, Perez LM, Mansilla HD (2010) Water Res 44:2533–2540

    Google Scholar 

  15. He X, Mezyk SP, Michael I, Fatta Kassinonand D, Dionysiou D (2014) J Hazard Mater 279:375–383

    CAS  PubMed  Google Scholar 

  16. Dong H, Zeng G, Tang L, Fan C, Zhang C, He X, He Y (2015) Water Res 79:128–146

    CAS  PubMed  Google Scholar 

  17. Chong MN, Jin B, Chow WK, Saint C (2010) Water Res 44:2997–3027

    CAS  PubMed  Google Scholar 

  18. Klavarioti M, Mantzavinos D, Kassinos D (2009) Environ Int 35:402–417

    CAS  PubMed  Google Scholar 

  19. Qu X, Alvarez PJJ, Li Q (2013) Water Res 47:3931–3946

    CAS  PubMed  Google Scholar 

  20. Lyu J, Zhu L, Burda C (2014) Catal Today 225:24–33

    CAS  Google Scholar 

  21. Thevenet F, Guaıtella O, Herrmann JM (2005) Appl Catal B 61:58–68

    CAS  Google Scholar 

  22. Faramarzpour M, Vossoughi M, Borghei M (2009) Chem Eng J 146:79–85

    CAS  Google Scholar 

  23. Kathiravan A, Asha Jhonsi M, Renganathan R (2011) Lumin J 131:1975–1981

    CAS  Google Scholar 

  24. Stets S, Amaral BD, Schneider JT, Ricardo de Barros I, Vinícius de Liz M, Rocha Ribeiro P, Nagata N, Peralta-Zamora P (2018) J Photochem Photobiol A 353:26–33

    CAS  Google Scholar 

  25. Awfa D, Ateia M, Fujii M, Johnson MS, Yoshimura C (2018) Water Res 142:26–45

    CAS  PubMed  Google Scholar 

  26. Natarajan S, Bajaj HC, Tayade RJ (2018) J Environ Sci 65:201–222

    Google Scholar 

  27. Jallouli N, Pastrana Martinez LM, Ribeiro AR, Moreria NFF, Faria JL, Hentati O, Silva AMT, Ksibi M (2018) Chem Eng J 334:976–984

    CAS  Google Scholar 

  28. Trojanowicz M, BojanowskaCzajka MA, Bartosiewicz I, Kulisa K (2018) Chem Eng J 336:170–199

    CAS  Google Scholar 

  29. Hrkal Z, Eckhardt P, Hrabankova A, Novotna E, Rozman D (2018) Water 10:1852

    CAS  Google Scholar 

  30. Nithyanandam R, Saravanane R (2013) Int J Chem Eng Appl 4:360–364

    Google Scholar 

  31. Moon DK, Maruyama T, Osakada K, Yamamoto T (1991) Chem Lett 20:1633–1636

    Google Scholar 

  32. Calza P, Sakkas VA, Medana C, Baiocchi C, Dimou A, Pelizzetti E, Albanis T (2006) Appl Catal B 67:197–205

    CAS  Google Scholar 

  33. Bae S, Kim D, Lee W (2013) Appl Catal B 134:93–102

    Google Scholar 

  34. Giri AS, Golder AK (2014) Ind Eng Chem Res 53:1351–1358

    CAS  Google Scholar 

  35. Kandavelu V, Kastien H, Ravindranathan Thampi K (2004) Appl Catal B 48:101–111

    CAS  Google Scholar 

  36. Shetty R, Kothari G, Tambe AS, Kulkarni BD, Kamble SP (2016) Indian J Chem 55A:16–22

    CAS  Google Scholar 

  37. Armakovic SJ, Armakovic S, CetojeviSimin DD, Sibul F, Abramovic BF (2018) Environ Pollut 233:916–924

    CAS  PubMed  Google Scholar 

  38. Salazar C, Contreras N, Mansilla HD, Yanez J, Salazar R (2016) J Hazard Mater 319:84–92

    CAS  PubMed  Google Scholar 

  39. Silva WLD, Lansarin MA, Livotto PR, Santos JHZD (2015) Powder Technol 279:166–172

    Google Scholar 

Download references

Acknowledgements

The corresponding author (K.N) of this paper wishes to express his gratefulness to Science & Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India for providing the financial support (EMR/2016/006812 Dated: 02-Nov-2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kandavelu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 274 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raji, A., Pandiyaraj, K.N., Kandavelu, V. et al. Efficiency evaluation of the photocatalytic degradation of telmisartan anti-hypertensive drug with Fenton, photo-Fenton and recyclable TiO2 heterogeneous catalyst. Reac Kinet Mech Cat 130, 1141–1154 (2020). https://doi.org/10.1007/s11144-020-01806-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01806-8

Keywords

Navigation