Skip to main content

Advertisement

Log in

Enhanced synthesis, structure, and ferroelectric properties of Nb-modified 1−x [Bi0.5 (Na0.4K0.1) (Ti1−xNbx)]O3−x(Ba0.7Sr0.3)TiO3 ceramics for energy storage applications

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

BNKTN-BST ceramics (1−x)[Bi0.5(Na0.4K0.1)(Ti1−xNbx)]Ox(Ba0.7Sr0.3)TiO3, (x = 0.00, 0.025, 0.050, 0.075) were synthesized by conventional solid-state reaction method. The prepared compounds were characterized by X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), ferroelectric, piezoelectric, and energy storage behavior. Powder-XRD characterization revealed a perovskite phase of all the prepared compounds and EDX analysis confirmed the presence of all the elements in the composition. The P-E hysteresis loops of the BNKTN-BST ceramics were measured under an electric field of 10–60 kV/cm at room temperature. BNKTN-BST at (x = 0.075) ceramics show higher piezoelectric constant d33 and energy storage efficiency of 127 pC/N and 68.2% respectively. Therefore, BNKTN-BST ceramic is a promising candidate which can be used in the energy storage capacitor and piezoelectric sensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zaman, A., Iqbal, Y., Hussain, A., Kim, M.H., Malik, R.A.: Dielectric, ferroelectric, and field-induced strain properties of Ta-doped 0.99Bi0.5(Na0.82K0.18)0.5TiO3–0.01LiSbO3 ceramics. J. Mater. Sci. 49, 3205–3214 (2014)

    Article  CAS  Google Scholar 

  2. Aksel, E., Jones, J.L.: Advances in lead-free piezoelectric materials for sensors and actuators. Sensors. 10(1935–1954), (2010)

    Article  CAS  Google Scholar 

  3. Perumal, R.N., Athikesavan, V.: Investigations on electrical and energy storage behaviour of PZN-PT, PMN-PT, PZN-PMN-PT piezoelectric solid solutions. J. Mater. Sci. Mater. Electron. 30, 902–913 (2019)

    Article  CAS  Google Scholar 

  4. Liu, Y., Yang, X., Lai, F., Huang, Z., Li, X., Wang, Z.: Structure and properties of Pb(Lu1/2Nb1/2) O3-0.2 PbTiO3 relaxor ferroelectric crystal. Mater. Res. 67, 83–86 (2015)

    CAS  Google Scholar 

  5. Reznitchenko, L.A., Shilkina, L.A., Razumovskaya, O.N.: Phase equilibrium and properties of solid solutions of PbTiO3-PbZrO3-PbNb2/3Mg1/3O3-PbGeO3 system. Inorg. Mater. 45, 173–181 (2009)

    Article  CAS  Google Scholar 

  6. Hao, X., Zhai, J., Song, X., Yang, J.: Fabrication and characterization of sol-gel derived (100) textured (Pb0.97La0.02)(Zr0.95Ti0.05)O3 thin films. J. Am. Ceram. Soc. 92, 3081–3083 (2009)

    Article  CAS  Google Scholar 

  7. Wang, D., Li, Y., Cao, W., Li, B., Yuan, J., Zhang, D.: Effect of MnO2 addition on relaxor behavior and electrical properties of PMNST ferroelectric ceramics. Ceram. Int. 41, 9647–9654 (2015)

    Article  Google Scholar 

  8. Wang, D., Li, J., Cao, M., Zhang, S.: Effects of Nb2O5 additive on the piezoelectric and dielectric properties of PHT-PMN ternary ceramics near the morphotropic phase boundary. Phys. Status Solidi. 211, 226–230 (2014)

    Article  CAS  Google Scholar 

  9. Wang, D., Zhao, Q., Cao, M., Cui, Y., Zhang, S.: Dielectric, piezoelectric and ferroelectric properties of Al2O3 and MnO2 modified PbSnO3-PbTiO3-Pb(Mg1/3Nb2/3)O3 ternary ceramics. Phys. Status. Solidi A. 210, 1363–1368 (2013)

    Article  CAS  Google Scholar 

  10. Tuan, N.H., Thiet, D.V., Odkhuu, D., Bac, L.H., Binh, P.V., Dung, D.D.: Defect induced room temperature ferromagnetism in lead-free ferroelectric Bi0.5K0.5TiO3 materials. Phys. B Condens. Matter. 532, 108–114 (2017)

    Article  Google Scholar 

  11. Yang, Z., Du, H.: Significantly enhanced recoverable energy storage density in potassium-sodium niobate-based lead free ceramics. J. Mater. Chem. 4, 13778–13785 (2016)

    Article  CAS  Google Scholar 

  12. Liu, X., Huiling, D.: Energy storage properties of BiTi0.5Zn0.5O3-Bi0.5Na0.5TiO3-BaTiO3 relaxor ferroelectrics. Ceram. Int. 42, 17876–17879 (2016)

    Article  CAS  Google Scholar 

  13. Zhang, L., Wang, Z., Yang, L., Chen, P., et al.: J. Eur. Ceram. Soc. (2019)

  14. Hussain, A., Kumar, B.: Intrinsic polarization and resistive leakage analyses in high performance piezo-/pyroelectric Ho-doped 0.64PMN-0.36PT binary ceramic. Adv. Powder Technol. (2018)

  15. Ma, J., Wua, J., Wu, B.: Composition design, electrical properties, and temperature stability in (1- x) K0.44Na0.56Nb0.96Sb0.04O3-xBi0.45La0.05Na0.5ZrO3 lead-free ceramics. RSC Adv. 8, 29871 (2018)

    Article  CAS  Google Scholar 

  16. Fan, P., Zhang, Y., Zhang, Q.: Large strain with low hysteresis in Bi4Ti3O12 modified Bi1/2(Na0.82K0.18)1/2TiO3 lead-free piezo ceramics. J. Eur. Ceram. Soc. (2018)

  17. Vivek, T.: Rathod, A review of electric impedance matching techniques for piezoelectric sensors. Actuators Transducers Electron. 8, 169 (2019)

    Google Scholar 

  18. Egerton, L., Dillon, D.M.: Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate. J. Am. Ceram. Soc. 42, 438–445 (1959)

    Article  CAS  Google Scholar 

  19. Rodel, J., Jo, W., Seifert, K.T.P., Anton, E.M., Granzow, T., Damjanovic, D.: Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153–1160 (2009)

    Article  Google Scholar 

  20. Praveen, E., Murugan, S., Jayakumar, K.: Effect of lithium doping in BaTiO3 ceramics for vibration sensor application. AIP Conf. Proc. 1942, 060003 (2018)

    Article  Google Scholar 

  21. Jiang, L., Xing, J., Tan, Z., Wu, J., Chen, Q., Xiao, D., Zhu, J.: High piezoelectricity in (K,Na)(Nb,Sb)O3-(Bi,La,Na,Li)ZrO3 lead-free ceramics. J. Mater. Sci. 51, 4963–4972 (2016)

    Article  CAS  Google Scholar 

  22. Wu, J., Xiao, D., Zhu, J.: Potassium–sodium niobate lead-free piezoelectric ceramics: recent advances and perspectives. J. Mater. Sci. Mater. Electron. 26, 9297–9308 (2015)

    Article  CAS  Google Scholar 

  23. Zheng, T., Wu, J., Cheng, X., Wang, X.: Wide phase boundary zone, piezoelectric properties, and stability in 0.97(K0.4Na0.6)-(Nb1−xSbx)O3-0.03Bi0.5Li0.5ZrO3 lead-free ceramics. Dalton Trans. 43, 9419 (2014)

    Article  CAS  Google Scholar 

  24. Qin, Y., Zhang, J.L., Yao, W., Lu, C.: Domain configuration and thermal stability of (K0.48Na0.52) (Nb0.96Sb0.04)O3-Bi0.50(Na0.82K0.18)0.50ZrO3 piezo ceramics with high d33 coefficient. ACS Appl. Mater. Interfaces. (2014)

  25. Baker, D.W., Thomas, P.A., Zhang, N., Glazer, A.M.: A comprehensive study of the phase diagram of KxNa1-xNbO3. Appl. Phys. Lett. (2009)

  26. Hussain, A., Ahn, C.W., Ullah, A., Lee, J.S., Kim, I.W.: Dielectric, ferroelectric and field-induced strain behavior of K0.5Na0.5NbO3 modified Bi-0.5(Na0.78K0.22)(0.5)TiO3 lead-free ceramics. Ceram. Int. 38, 4143–4150 (2012)

    Article  CAS  Google Scholar 

  27. Shrout, T.R., Zhang, S.J.: Lead-free piezoelectric ceramics: alternatives for PZT. J. Electroceram. 19, 111–114 (2007)

    Article  CAS  Google Scholar 

  28. Lia, Q., Zhang, M.-H., Zhu, Z.-X., Wang, K., Zhou, J.-S., Yao, F.-Z.: Poling engineering of (K, Na)NbO3-based lead-free piezo ceramics with orthorhombic-tetragonal coexisting phases. J. Mater. Chem. C. (2016)

  29. Malic, B., Koruza, J., Hrešcak, J., Bernard, J., Wang, K., Fisher, J.G., Bencan, A.: Sintering of lead-free piezoelectric sodium potassium niobate ceramics. Materials. 8, 8117–8146 (2015)

    Article  CAS  Google Scholar 

  30. Hagh, N.M., Jadidian, B., Safari, A.: Property-processing relationship in lead-free (K, Na, Li) NbO3-solid solution system. J. Electroceram. 18, 339–346 (2007)

    Article  Google Scholar 

  31. Koruza, J., Maliˇc, B.: Initial stage sintering mechanism of NaNbO3 and implications regarding the densification of alkaline niobates. J. Eur. Ceram. Soc. 34, 1971–1979 (2014)

    Article  CAS  Google Scholar 

  32. Jaeger, R.E., Egerton, L.: Hot pressing of potassium-sodium niobates. J. Am. Ceram. Soc. 45, 209–213 (1962)

    Article  CAS  Google Scholar 

  33. Li, J.F., Wang, K., Zhang, B.P., Zhang, L.M.: Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc. 89, 706–800 (2006)

    Article  CAS  Google Scholar 

  34. Acker, J., Kung, H.M., Hoffmann, J.: Influence of alkaline and niobium excess on sintering and microstructure of sodium-potassium niobate (K0.5Na0.5) NbO3. J. Am. Ceram. Soc. 93, 1270–1281 (2010)

    CAS  Google Scholar 

  35. Hussain, A., Zaman, A., Iqbal, Y., Kim, M.H.: Dielectric, ferroelectric and field induced strain properties of Nb-modified Pb-free 0.99Bi0.5(Na0.82K0.18)0.5TiO3-0.01LiSbO3 ceramics. J. Alloys Compd. 574, 320–324 (2013)

    Article  CAS  Google Scholar 

  36. Ullah, A., Malik, R.A.: Electric-field-induced phase transition and large strain in lead-free Nb-doped BNKT-BST ceramics. J. Eur. Ceram. Soc. 34, 29–35 (2014)

    Article  CAS  Google Scholar 

  37. Perumal, R.N., Athikesavan, V.: Influence of lead titanate additive on the structural and electrical properties of Na0.5Bi0.5TiO3-SrTiO3 piezoelectric ceramics. Ceram. Int. 44, 13259–13266 (2018)

    Article  CAS  Google Scholar 

  38. Makhloufi, S., Omari, E., Omari, M.: Synthesis, characterization, and electrocatalytic properties of La0.9Sr0.1Cr1−xCoxO3 perovskite oxides. J. Aust. Ceram. Soc. (2018)

  39. Pham, K.-N., Hussain, A.: Giant strain in Nb-doped Bi0.5(Na0.82K0.18)0.5TiO3 lead-free electromechanical ceramics. Mater. Lett. 64, 2219–2222 (2010)

    Article  CAS  Google Scholar 

  40. Lin, Y., Zhao, S.: Effects of doping Eu on the phase transformation and piezoelectric properties of Na0.5Bi0.5TiO3-based ceramics. Mater. Sci. Eng. 99, 449–452 (2003)

    Article  Google Scholar 

  41. Li, N., Ma, W.: Effect of K content to lead-free SrBi4Ti4O15-(Na0.5Bi0.5)Bi4Ti4O15 piezoelectric ceramics. J. Mater. Sci. Mater. Electron. (2016)

  42. Binh, D.N., Hussain, A.: Enhanced electric-field-induced strain at the ferroelectric-electrostrcitive phase boundary of yttrium-doped Bi0.5(Na0.82K0.18)0.5TiO3 lead-free piezoelectric ceramics. J. Korean Phys. Soc. 57, 892–896 (2010)

    Article  CAS  Google Scholar 

  43. Herabut, A., Safari, A.: Processing and electromechanical properties of (Bi0.5Na0.5)(1–1.5x) LaxTiO3 ceramics. J. Am. Ceram. Soc. 80(11), 2954–2958 (1997)

    Article  CAS  Google Scholar 

  44. Lin, D., Kwok, K.W., Chan, H.L.W.: Ferroelectric and piezoelectric properties of Bi0.5Na0.5TiO3-SrTiO3-Bi0.5Li0.5TiO3 lead-free ceramics. J. Alloys Compd. 481, 310–315 (2009)

    Article  CAS  Google Scholar 

  45. Chen, Z.W., Hu, J.Q.: Piezoelectric and dielectric properties of Bi0.5(Na0.84K0.16)0.5TiO3-Ba(Zr0.04Ti0.96)O3 lead free piezoelectric ceramics. Adv. Appl. Ceram. 107, 222 (2008)

    Article  CAS  Google Scholar 

  46. Parija, B., Badapanda, T.: Diffuse phase transition, piezoelectric and optical study of Bi0·5Na0·5TiO3 ceramic. Bull. Mater. Sci. 35, 197–202 (2012)

    Article  CAS  Google Scholar 

  47. Peng, C., Li, J., Gong, W.: Preparation and properties of (Bi1/2Na1/2) TiO3-Ba (Ti, Zr) O3 lead-free piezoelectric ceramics. Mater. Lett. 59, 1576 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the CMR Institute of Technology, Bangalore, for Powder XRD and IISC Bangalore for EDX characterization and SSN-CREST, Kalavakkam, Chennai, for ferroelectric and piezoelectric studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Narayana Perumal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grace, M.A.L., Sambasivam, R., Perumal, R.N. et al. Enhanced synthesis, structure, and ferroelectric properties of Nb-modified 1−x [Bi0.5 (Na0.4K0.1) (Ti1−xNbx)]O3−x(Ba0.7Sr0.3)TiO3 ceramics for energy storage applications. J Aust Ceram Soc 56, 157–165 (2020). https://doi.org/10.1007/s41779-019-00441-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-019-00441-4

Keywords

Navigation