Skip to main content
Log in

Fractography analysis of Sn-58Bi solder joint after addition of cobalt nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Miniaturization of electronic devices causes reliability issues in solder joints such as a reduction in mechanical, structural, and electrical properties. This work focuses on studying the effects of cobalt nanoparticle (NP) addition on the structural and mechanical properties of the Sn-58Bi solder joint. 0, 0.5, 1, and 2% Co NP added samples were prepared. The reflow process was done at 180 °C for 1 min. After the reflow process, all samples were aged at 70 °C for different periods of 0 h, 126 h, and 504 h. After the tensile test, the fractography was done using scanning electron microscopy (SEM). The result showed that after the addition of Co-nanoparticles, the grain size of Sn-58Bi was refined and significantly reduced for as reflowed samples. After thermal aging, the grain size was increased for all types of samples, while the increment in Sn-58Bi-0.5Co/1Co/2Co was controlled as compared to the Sn-58Bi solder joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

This manuscript has no associated data.

References

  1. R.R. Tummala, E.J. Rymaszewski, A.G. Klopfenstein, Microelectronics Packaging Handbook: Technology Drivers Part I (Springer Science & Business Media, 2012)

  2. C.A. Mack, Fifty years of Moore’s law. IEEE Trans. Semicond. Manuf. 24(2), 202–207 (2011)

    Article  Google Scholar 

  3. W. Arden et al., More-than-Moore white paper. Version 2, 14 (2010)

    Google Scholar 

  4. S.K. Kang, A.K. Sarkhel, Lead (Pb)-free solders for electronic packaging. J. Electron. Mater. 23(8), 701–707 (1994)

    Article  CAS  Google Scholar 

  5. S. Menon et al., High lead solder (over 85%) solder in the electronics industry: RoHS exemptions and alternatives. J. Mater. Sci.: Mater. Electron. 26(6), 4021–4030 (2015)

    CAS  Google Scholar 

  6. E. Ringgaard, T. Wurlitzer, Lead-free piezoceramics based on alkali niobates. J. Eur. Ceram. Soc. 25(12), 2701–2706 (2005)

    Article  CAS  Google Scholar 

  7. L.-H. Su et al., Interfacial reactions in molten Sn/Cu and molten In/Cu couples. Metall. and Mater. Trans. B. 28(5), 927–934 (1997)

    Article  Google Scholar 

  8. H.R. Kotadia, P.D. Howes, S.H. Mannan, A review: on the development of low melting temperature Pb-free solders. Microelectron. Reliab. 54(6–7), 1253–1273 (2014)

    Article  CAS  Google Scholar 

  9. N.C. Lee, Getting ready for lead-free solders. Solder. Surf. Mount Technol. (1997). https://doi.org/10.1108/09540919710800656

    Article  Google Scholar 

  10. M.N. Bashir et al., Effects of tin particles addition on structural and mechanical properties of eutectic Sn–58Bi solder joint. J. Mater. Sci.: Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-09028-5

    Article  Google Scholar 

  11. G. Ren, I.J. Wilding, M.N. Collins, Alloying influences on low melt temperature SnZn and SnBi solder alloys for electronic interconnections. J. Alloy. Compd. 665, 251–260 (2016)

    Article  CAS  Google Scholar 

  12. Z. Mei, J. Morris, Characterization of eutectic Sn-Bi solder joints. J. Electron. Mater. 21(6), 599–607 (1992)

    Article  CAS  Google Scholar 

  13. C. Wu et al., Properties of lead-free solder alloys with rare earth element additions. Mater. Sci. Eng. R. Rep. 44(1), 1–44 (2004)

    Article  Google Scholar 

  14. Z. Huang, P.P. Conway, R. Qin, Modeling of interfacial intermetallic compounds in the application of very fine lead-free solder interconnections. Microsyst. Technol. 15(1), 101–107 (2009)

    Article  CAS  Google Scholar 

  15. J. Shen et al., Microstructure and mechanical properties of gas metal arc welded CoCrFeMnNi joints using a 308 stainless steel filler metal. Scripta Mater. 222, 115053 (2023)

    Article  CAS  Google Scholar 

  16. J. Shen et al., Gas tungsten arc welding of as-cast AlCoCrFeNi2. 1 eutectic high entropy alloy. Mater. Des. 223, 111176 (2022)

    Article  CAS  Google Scholar 

  17. J. Oliveira et al., Improving the ductility in laser welded joints of CoCrFeMnNi high entropy alloy to 316 stainless steel. Mater. Des. 219, 110717 (2022)

    Article  CAS  Google Scholar 

  18. F. Wang et al., Recent progress on the development of Sn–Bi based low-temperature Pb-free solders. J. Mater. Sci.: Mater. Electron. 30(4), 3222–3243 (2019)

    Article  CAS  Google Scholar 

  19. X. Li et al., Effects of nanoscale Cu6Sn5 particles addition on microstructure and properties of SnBi solder alloys. Mater. Sci. Eng., A 684, 328–334 (2017)

    Article  CAS  Google Scholar 

  20. M.-L. Li et al., Materials modification of the lead-free solders incorporated with micro/nano-sized particles: a review. Mater. Des. 197, 109224 (2021)

    Article  CAS  Google Scholar 

  21. O. Mokhtari, H. Nishikawa, Transient liquid phase bonding of Sn–Bi solder with added Cu particles. J. Mater. Sci.: Mater. Electron. 27(5), 4232–4244 (2016)

    CAS  Google Scholar 

  22. G. Xu et al., Retarding the electromigration effects to the eutectic SnBi solder joints by micro-sized Ni-particles reinforcement approach. J. Alloy. Compd. 509(3), 878–884 (2011)

    Article  CAS  Google Scholar 

  23. K.D. Min et al., Microstructures and mechanical properties of Sn-58 wt% Bi solder with Ag-decorated multiwalled carbon nanotubes under 85° C/85% relative humidity environmental conditions. J. Electron. Mater. 49(2), 1527–1533 (2020)

    Article  CAS  Google Scholar 

  24. L. Yang et al., Improved microstructure and mechanical properties for Sn58Bi solder alloy by addition of Ni-coated carbon nanotubes. Mater. Sci. Eng., A 642, 7–15 (2015)

    Article  CAS  Google Scholar 

  25. F. Khodabakhshi, M. Zareghomsheh, G. Khatibi, Nanoindentation creep properties of lead-free nanocomposite solders reinforced by modified carbon nanotubes. Mater. Sci. Eng., A 797, 140203 (2020)

    Article  CAS  Google Scholar 

  26. S.-J. Zhong et al., Development of lead-free interconnection materials in electronic industry during the past decades: structure and properties. Mater. Des. 215, 110439 (2022)

    Article  CAS  Google Scholar 

  27. Y. Li, Y. Chan, Effect of silver (Ag) nanoparticle size on the microstructure and mechanical properties of Sn58Bi–Ag composite solders. J. Alloy. Compd. 645, 566–576 (2015)

    Article  CAS  Google Scholar 

  28. N. Jiang et al., Influences of doping Ti nanoparticles on microstructure and properties of Sn58Bi solder. J. Mater. Sci.: Mater. Electron. 30(19), 17583–17590 (2019)

    CAS  Google Scholar 

  29. S.H. Rajendran, H. Kang, J.P. Jung, Ultrasonic-assisted dispersion of ZnO nanoparticles to Sn-Bi solder: a study on microstructure, spreading, and mechanical properties. J. Mater. Eng. Perform. 30(5), 3167–3172 (2021)

    Article  CAS  Google Scholar 

  30. A.K. Gain, L. Zhang, Growth mechanism of intermetallic compound and mechanical properties of nickel (Ni) nanoparticle doped low melting temperature tin–bismuth (Sn–Bi) solder. J. Mater. Sci.: Mater. Electron. 27(1), 781–794 (2016)

    CAS  Google Scholar 

  31. M. Nasir Bashir et al., Effect of cobalt nanoparticles on mechanical properties of Sn–58Bi solder joint. J. Mater. Sci.: Mater. Electron. 33, 22573–22579 (2022)

    CAS  Google Scholar 

  32. C. Chen et al., Mechanical properties and microstructure evolution of Cu/Sn58Bi/Cu solder joint reinforced by B4C nanoparticles. J. Market. Res. 23, 1225–1238 (2023)

    CAS  Google Scholar 

  33. M.N. Bashir et al., Effect of cobalt doping on the microstructure and tensile properties of lead free solder joint subjected to electromigration. J. Mater. Sci. Technol. 32(11), 1129–1136 (2016)

    Article  CAS  Google Scholar 

  34. M.N. Bashir et al., Effects of cobalt nanoparticle on microstructure of Sn58Bi solder joint. J. Mater. Sci.: Mater. Electron. 34(4), 248 (2023)

    CAS  Google Scholar 

  35. X. Chen et al., Mechanical deformation behavior and mechanism of Sn-58Bi solder alloys under different temperatures and strain rates. Mater. Sci. Eng., A 662, 251–257 (2016)

    Article  CAS  Google Scholar 

  36. Y. Zhang et al., Alloying Effects on the phase stability and mechanical properties of doped Cu-Sn IMCs: a first-principle study. J. Electron. Mater. 45, 4018–4027 (2016)

    Article  CAS  Google Scholar 

  37. M.N. Bashir et al., Effect of Ni and Co nanoparticle-doped flux on microstructure of SAC305 solder matrix. J. Mater. Sci.: Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-08827-0

    Article  Google Scholar 

  38. M.N. Bashir, A. Haseeb, Grain size stability of interfacial intermetallic compound in Ni and Co nanoparticle-doped SAC305 solder joints under electromigration. J. Mater. Sci.: Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-08352-0

    Article  Google Scholar 

  39. M.N. Bashir et al., Role of crystallographic orientation of β-Sn grain on electromigration failures in lead-free solder joint: an overview. Coatings 12(11), 1752 (2022)

    Article  CAS  Google Scholar 

  40. F. Gao, T. Takemoto, H. Nishikawa, Effects of Co and Ni addition on reactive diffusion between Sn–3.5 Ag solder and Cu during soldering and annealing. Mater. Sci. Eng.: A 420(1), 39–46 (2006)

    Article  Google Scholar 

  41. G. Sujan et al., Interfacial reaction, ball shear strength and fracture surface analysis of lead-free solder joints prepared using cobalt nanoparticle doped flux. J. Alloy. Compd. 695, 981–990 (2017)

    Article  CAS  Google Scholar 

  42. G. Sujan, A. Haseeb, A. Afifi, Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate. Mater. Charact. 97, 199–209 (2014)

    Article  CAS  Google Scholar 

  43. R. Kane, B. Giessen, N. Grant, New metastable phases in binary tin alloy systems. Acta Metall. 14(5), 605–609 (1966)

    Article  CAS  Google Scholar 

  44. L. Yang et al., Effects of Ni addition on mechanical properties of Sn58Bi solder alloy during solid-state aging. Mater. Sci. Eng., A 667, 368–375 (2016)

    Article  CAS  Google Scholar 

  45. C. Ma, R. Swalin, A study of solute diffusion in liquid tin. Acta Metall. 8(6), 388–395 (1960)

    Article  CAS  Google Scholar 

  46. G. Careri, A. Paoletti, Self-diffusion in liquid indium and tin. Il Nuovo Cimento. 2(3), 574–591 (1955)

    Article  CAS  Google Scholar 

  47. R. Tian et al., Effects of nanoparticle addition on the reliability of Sn-based Pb-free solder joints under various conditions: a review. NANO 18(01), 2330001 (2023)

    Article  CAS  Google Scholar 

  48. A. Haseeb, T.S. Leng, Effects of Co nanoparticle addition to Sn–3.8 Ag–0.7 Cu solder on interfacial structure after reflow and ageing. Intermetallics 19(5), 707–712 (2011)

    Article  CAS  Google Scholar 

  49. S. Tay et al., Influence of Ni nanoparticle on the morphology and growth of interfacial intermetallic compounds between Sn–3.8 Ag–0.7 Cu lead-free solder and copper substrate. Intermetallics 33, 8–15 (2013)

    Article  CAS  Google Scholar 

  50. J. Bobet et al., Study of Mg-M (M= Co, Ni and Fe) mixture elaborated by reactive mechanical alloying—hydrogen sorption properties. Int. J. Hydrogen Energy 25(10), 987–996 (2000)

    Article  CAS  Google Scholar 

  51. J.-L. Bobet, E. Akiba, B. Darriet, Study of Mg-M (M= Co, Ni and Fe) mixture elaborated by reactive mechanical alloying: hydrogen sorption properties. Int. J. Hydrogen Energy 26(5), 493–501 (2001)

    Article  CAS  Google Scholar 

  52. H. Yano et al., Oxygen reduction activity of carbon-supported Pt− M (M= V, Ni, Cr Co, and Fe) alloys prepared by nanocapsule method. Langmuir 23(11), 6438–6445 (2007)

    Article  CAS  Google Scholar 

  53. M. Jiang et al., A thermodynamic assessment of the Co–Sn system. Calphad 28(2), 213–220 (2004)

    Article  CAS  Google Scholar 

  54. S.-W. Chen et al., Interfacial reactions in Sn-Ag/Co couples. J. Electron. Mater. 43(2), 636–639 (2014)

    Article  CAS  Google Scholar 

  55. A. Yakymovych et al., Effect of nano Co reinforcements on the structure of the Sn-3.0 Ag-0.5 Cu solder in liquid and after reflow solid states. Mater. Chem. Phys. 181, 470–475 (2016)

    Article  CAS  Google Scholar 

  56. Z. Ma, S. Belyakov, C. Gourlay, Effects of cobalt on the nucleation and grain refinement of Sn-3Ag-0.5 Cu solders. J. Alloys Compds. 682, 326–337 (2016)

    Article  CAS  Google Scholar 

  57. M.G. Cho et al., Enhancement of heterogeneous nucleation of β-Sn phases in Sn-rich solders by adding minor alloying elements with hexagonal closed packed structures. Appl. Phys. Lett. 95(2), 021905 (2009)

    Article  Google Scholar 

  58. D.H. Kim et al., Effects of Co addition on bulk properties of Sn-3.5 Ag solder and interfacial reactions with Ni-P UBM. J. Electron. Mater. 38(1), 39–45 (2009)

    Article  Google Scholar 

  59. J.-M. Song, C.-F. Huang, H.-Y. Chuang, Microstructural characteristics and vibration fracture properties of Sn–Ag–Cu–TM (TM= Co, Ni, and Zn) alloys. J. Electron. Mater. 35(12), 2154–2163 (2006)

    Article  CAS  Google Scholar 

  60. F. Cheng, H. Nishikawa, T. Takemoto, Microstructural and mechanical properties of Sn–Ag–Cu lead-free solders with minor addition of Ni and/or Co. J. Mater. Sci. 43(10), 3643–3648 (2008)

    Article  CAS  Google Scholar 

  61. A. El-Daly et al., Microstructure, mechanical properties, and deformation behavior of Sn–10 Ag–05 Cu solder after Ni and Sb additions. Mater. Des. 43, 40–49 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges the research support provided by the Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.

Funding

This research received no funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to Muhammad Nasir Bashir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saad, H.M., Bashir, M.N. Fractography analysis of Sn-58Bi solder joint after addition of cobalt nanoparticles. J Mater Sci: Mater Electron 34, 2235 (2023). https://doi.org/10.1007/s10854-023-11647-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11647-5

Navigation