Skip to main content
Log in

Alloying Effects on the Phase Stability and Mechanical Properties of Doped Cu-Sn IMCs: A First-Principle Study

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Cu-Sn phases are important intermetallic compounds formed at the interface between solder and substrate in the soldering process. They exist in several crystal structures (η′, η, η 1 and η 2, etc.). The solid-state phase transformation that occurs among Cu-Sn intermetallic compounds is a crucial issue for industry applications, because the associated volume change inevitably leads to microstructural instability. Generally, four alloying elements, i.e., Ni, Au, Zn, and indium (In), are used as alloying elements to stabilize the high temperature hexagonal η-phase. However, the physical mechanism of this stabilization effect, especially on the high temperature η 1 and η 2 phases, is still unclear. In the present study, first-principle calculations were performed to study the stability and mechanical properties of Cu5Sn4 (η 1 and η 2) and Cu6Sn5 (η′) when doped with Ni, Au, Zn, and indium alloying elements. It is shown that their phase stability and mechanical properties could be enhanced by these elements in some circumstances. Ni-doping can significantly enhance both the stability and the mechanical properties of the three phases, whereas Zn-doping exhibits a significant effect on that of the η 2 phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Kohler, T. Campanella, S. Nakanishi, and M. Rappaz, Acta Mater. 56, 1519 (2008).

    Article  Google Scholar 

  2. K. Nogita, C.M. Gourlay, S.D. McDonald, Y.Q. Wu, J. Read, and Q.F. Gu, Scr. Mater. 65, 922 (2011).

    Article  Google Scholar 

  3. G. Ghosh and M. Asta, J. Mater. Res. 20, 3102 (2005).

    Article  Google Scholar 

  4. T. Laurila, V. Vuorinen, and J.K. Kivilahti, Mat. Sci. Eng. R 49, 1 (2005).

    Article  Google Scholar 

  5. N. Saunders and A.P. Miodownik, Bull. Alloy Phase Diagrams 11, 278 (1990).

    Article  Google Scholar 

  6. S.H. Ju, H.C. Jang, and Y.C. Kang, J. Power Sources 189, 163 (2009).

    Article  Google Scholar 

  7. K.D. Kepler, J.T. Vaughey, and M.M. Thackeray, Electrochem. Solid-State Lett. 2, 307 (1999).

    Article  Google Scholar 

  8. A.K. Larsson, L. Stenberg, and S. Lidin, Acta Crystallogr. Sect. B 50, 636 (1994).

    Article  Google Scholar 

  9. S. Lidin and A.K. Larsson, J. Solid State Chem. 118, 313 (1995).

    Article  Google Scholar 

  10. A.K. Larsson, L. Stenberg, and S. Lidin, Z. Kristallogr. 210, 832 (1995).

    Google Scholar 

  11. Y.Q. Wu, J.C. Barry, T. Yamamoto, Q.F. Gu, S.D. McDonald, S. Matsumura, and K. Nogita, Acta Mater. 60, 6581 (2012).

    Article  Google Scholar 

  12. C.Y. Chou and S.W. Chen, Acta Mater. 54, 2393 (2006).

    Article  Google Scholar 

  13. K. Nogita, C.M. Gourlay, and T. Nishimura, JOM 61, 45 (2009).

    Article  Google Scholar 

  14. U. Schwingenschlogl, C. Di Paola, K. Nogita, and C.M. Gourlay, Appl. Phys. Lett. 96, 061908 (2010).

    Article  Google Scholar 

  15. K. Nogita, D. Mu, S.D. McDonald, J. Read, and Y.Q. Wu, Intermetallics 26, 78 (2012).

    Article  Google Scholar 

  16. C. Yu, J. Liu, H. Lu, P.L. Li, and J.M. Chen, Intermetallics 15, 1471 (2007).

    Article  Google Scholar 

  17. G. Zeng, S.D. McDonald, Q. Gu, Y. Terada, K. Uesugi, H. Yasuda, and K. Nogita, Acta Mater. 83, 357 (2015).

    Article  Google Scholar 

  18. G. Zeng, S.D. McDonald, Q. Gu, S. Suenaga, Y. Zhang, J.H. Chen, and K. Nogita, Intermetallics 43, 85 (2013).

    Article  Google Scholar 

  19. G. Zeng, S.D. McDonald, Q. Gu, and K. Nogita, J. Mater. Res. 27, 2609 (2012).

    Article  Google Scholar 

  20. Y. Yang, Y. Li, H. Lu, C. Yu, and J.M. Chen, Comp. Mater. Sci. 65, 490 (2012).

    Article  Google Scholar 

  21. W.Q. Shao, C.Y. Yu, W.C. Lu, J.G. Duh, and S.O. Chen, Mater. Lett. 93, 300 (2013).

    Article  Google Scholar 

  22. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  23. G. Kresse and J. Furthmüller, Comp. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  24. K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).

    Article  Google Scholar 

  25. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  Google Scholar 

  26. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  27. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  28. Z.R. Liu, J.H. Chen, S.B. Wang, D.W. Yuan, M.J. Yin, and C.L. Wu, Acta Mater. 59, 7396 (2011).

    Article  Google Scholar 

  29. S.B. Wang, J.H. Chen, M.J. Yin, Z.R. Liu, D.W. Yuan, J.Z. Liu, C.H. Liu, and C.L. Wu, Acta Mater. 60, 6573 (2012).

    Article  Google Scholar 

  30. L.H. Liu, J.H. Chen, T.W. Fan, Z.R. Liu, Y. Zhang, and D.W. Yuan, Comp. Mater. Sci. 108, 136 (2015).

    Article  Google Scholar 

  31. J. Klimeš, D.R. Bowler, and A. Michaelides, Phys. Rev. B 83, 195131 (2011).

    Article  Google Scholar 

  32. S. Ramos de Debiaggi, C. Deluque, G. Toro, F. Cabeza, and A. Fernández Guillermet, J. Alloys Compd. 542, 280 (2012).

    Article  Google Scholar 

  33. G.Y. Jang, J.W. Lee, and J.G. Duh, J. Electron. Mater. 33, 1103 (2004).

    Article  Google Scholar 

  34. B. Subrahmanyam, Trans. Japan Inst. Metals 13, 93 (1972).

    Article  Google Scholar 

  35. R. Yu, J. Zhu, and H.Q. Ye, Comput. Phys. Commun. 181, 671 (2010).

    Article  Google Scholar 

  36. R. Hill, Proc. Phys. Soc. A 65, 349 (1952).

    Article  Google Scholar 

  37. S.F. Pugh, Philos. Mag. 45, 823 (1954).

    Article  Google Scholar 

  38. S.X. Chen, W. Zhou, and P. Wu, J. Electron. Mater. 44, 3920 (2015).

    Article  Google Scholar 

  39. D.G. Pettifor, Mater. Sci. Technol. 8, 345 (1992).

    Article  Google Scholar 

  40. K. Chen, L.R. Zhao, and J.S. Tse, J. Appl. Phys. 93, 2414 (2003).

    Article  Google Scholar 

  41. H. Wang, Z.D. Zhang, R.Q. Wu, and L.Z. Sun, Acta Mater. 61, 2919 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 11427806, 51471067, 51371081, 51171063), the National Basic Research (973) Program of China (No. 2009CB623704), and Hunan Provincial Natural Science Foundation of China (No. 14JJ4052). The author thanks Dr. Kazuhiro Nogita from the University of Queensland for his valuable input on the early stage of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang-Hua Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yuan, DW., Chen, JH. et al. Alloying Effects on the Phase Stability and Mechanical Properties of Doped Cu-Sn IMCs: A First-Principle Study. J. Electron. Mater. 45, 4018–4027 (2016). https://doi.org/10.1007/s11664-016-4605-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4605-3

Keywords

Navigation